These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 38878099

  • 1. MiRNA-133a-3p Attenuates Renal Tubular Epithelial Cell Injury via Targeting MALM1 and Suppressing the Notch Signaling Pathway in Diabetic Nephropathy.
    Li Y, Tan P, Liu Q, Liu M, Wang Y, Kong W, Sun H, Shao X.
    Cell Biochem Biophys; 2024 Sep; 82(3):2401-2411. PubMed ID: 38878099
    [Abstract] [Full Text] [Related]

  • 2. MiR-142-3p ameliorates high glucose-induced renal tubular epithelial cell injury by targeting BOD1.
    Zhao N, Luo Q, Lin R, Li Q, Ma P.
    Clin Exp Nephrol; 2021 Nov; 25(11):1182-1192. PubMed ID: 34145485
    [Abstract] [Full Text] [Related]

  • 3. Circ_0000064 promotes high glucose-induced renal tubular epithelial cells injury to facilitate diabetic nephropathy progression through miR-532-3p/ROCK1 axis.
    Wang H, Huang S, Hu T, Fei S, Zhang H.
    BMC Endocr Disord; 2022 Mar 15; 22(1):67. PubMed ID: 35291991
    [Abstract] [Full Text] [Related]

  • 4. MicroRNA (miR)-590-3p alleviates high-glucose induced renal tubular epithelial cell damage by targeting C-X3-C motif chemokine ligand 1 (CX3CL1) in diabetic nephropathy.
    Yun J, Ren J, Liu Y, Dai L, Song L, Ma X, Luo S, Song Y.
    Bioengineered; 2022 Jan 15; 13(1):634-644. PubMed ID: 34898373
    [Abstract] [Full Text] [Related]

  • 5. Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells.
    Li G, Qin Y, Qin S, Zhou X, Zhao W, Zhang D.
    Life Sci; 2020 Oct 15; 259():118269. PubMed ID: 32798559
    [Abstract] [Full Text] [Related]

  • 6. MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells.
    Su J, Ren J, Chen H, Liu B.
    Biosci Rep; 2020 Mar 27; 40(3):. PubMed ID: 32073611
    [Abstract] [Full Text] [Related]

  • 7. Downregulation of Salusin-β protects renal tubular epithelial cells against high glucose-induced inflammation, oxidative stress, apoptosis and lipid accumulation via suppressing miR-155-5p.
    Chen H, Jin G.
    Bioengineered; 2021 Dec 27; 12(1):6155-6165. PubMed ID: 34482798
    [Abstract] [Full Text] [Related]

  • 8. Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy.
    Liu Q, Cui Y, Ding N, Zhou C.
    Eur J Med Res; 2022 Apr 07; 27(1):55. PubMed ID: 35392987
    [Abstract] [Full Text] [Related]

  • 9. MicroRNA-494-3p Exacerbates Renal Epithelial Cell Dysfunction by Targeting SOCS6 under High Glucose Treatment.
    Xue X, Liu M, Wang Y, Yang Y, Li Z, Shi R, Miao Y.
    Kidney Blood Press Res; 2022 Apr 07; 47(4):247-255. PubMed ID: 35038704
    [Abstract] [Full Text] [Related]

  • 10. β-Amyrin ameliorates diabetic nephropathy in mice and regulates the miR-181b-5p/HMGB2 axis in high glucose-stimulated HK-2 cells.
    Xu W, Zhang H, Zhang Q, Xu J.
    Environ Toxicol; 2022 Mar 07; 37(3):637-649. PubMed ID: 34894065
    [Abstract] [Full Text] [Related]

  • 11. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway.
    Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X, Wang MJ.
    J Transl Med; 2015 Nov 09; 13():352. PubMed ID: 26552447
    [Abstract] [Full Text] [Related]

  • 12. miR-188-3p abolishes germacrone-mediated podocyte protection in a mouse model of diabetic nephropathy in type I diabetes through triggering mitochondrial injury.
    Wang Y, Feng F, He W, Sun L, He Q, Jin J.
    Bioengineered; 2022 Jan 09; 13(1):774-788. PubMed ID: 34847832
    [Abstract] [Full Text] [Related]

  • 13. The role and mechanism of action of miR-483-3p in mediating the effects of IGF-1 on human renal tubular epithelial cells induced by high glucose.
    Abudoureyimu M, Tayier T, Zhang L.
    Sci Rep; 2024 Jul 07; 14(1):15635. PubMed ID: 38972889
    [Abstract] [Full Text] [Related]

  • 14. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway.
    Li H, Zhu X, Zhang J, Shi J.
    Biomed Pharmacother; 2017 Dec 07; 96():471-479. PubMed ID: 29031207
    [Abstract] [Full Text] [Related]

  • 15. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway.
    Zhang Y.
    Biosci Rep; 2021 Sep 30; 41(9):. PubMed ID: 33729484
    [Abstract] [Full Text] [Related]

  • 16. LINC01232 targeting miR-1250-3p/MSH2 axis attenuates mesangial cell proliferation and fibrosis in diabetic nephropathy.
    Tu X, Zhang H, Ren H.
    Mol Cell Biochem; 2024 Aug 30; 479(8):2093-2103. PubMed ID: 37642881
    [Abstract] [Full Text] [Related]

  • 17. Diminution of microRNA-98 alleviates renal fibrosis in diabetic nephropathy by elevating Nedd4L and inactivating TGF-β/Smad2/3 pathway.
    Zeng Y, Feng Z, Liao Y, Yang M, Bai Y, He Z.
    Cell Cycle; 2020 Dec 30; 19(24):3406-3418. PubMed ID: 33315506
    [Abstract] [Full Text] [Related]

  • 18. LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3.
    Liu C, Zhuo H, Ye MY, Huang GX, Fan M, Huang XZ.
    Kaohsiung J Med Sci; 2020 Sep 30; 36(9):682-691. PubMed ID: 32391974
    [Abstract] [Full Text] [Related]

  • 19. CircTAOK1 regulates high glucose induced inflammation, oxidative stress, ECM accumulation, and apoptosis in diabetic nephropathy via targeting miR-142-3p/SOX6 axis.
    Liu SY, Wang H, Yang B, Hou B, Sun LS, Pang H, Wang HH, Fan YP.
    Environ Toxicol; 2024 Apr 30; 39(4):2197-2207. PubMed ID: 38124441
    [Abstract] [Full Text] [Related]

  • 20. MicroRNA 1228 Mediates the Viability of High Glucose-Cultured Renal Tubule Cells through Targeting Thrombospondin 2 and PI3K/AKT Signaling Pathway.
    Mo T, Fu Q, Hu X, Fu Y, Li J.
    Kidney Blood Press Res; 2022 Apr 30; 47(1):1-12. PubMed ID: 34784607
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.