These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
639 related items for PubMed ID: 38885761
1. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Farahat Z, Zrira N, Souissi N, Bennani Y, Bencherif S, Benamar S, Belmekki M, Ngote MN, Megdiche K. Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761 [Abstract] [Full Text] [Related]
2. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P, Mishra DK, Shanmugam MP, Doshi B, Jayaraj H, Ramanjulu R. Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [Abstract] [Full Text] [Related]
3. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D, Gill HM, Happe M, Bhatwadekar AD, Hajrasouliha AR, Janga SC. Front Med (Lausanne); 2022 Feb; 9():1050436. PubMed ID: 36425113 [Abstract] [Full Text] [Related]
4. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM, Huhtinen P, Ohtonen P, Keskitalo A, Wirkkala J, Hautala N. Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [Abstract] [Full Text] [Related]
5. How Can Artificial Intelligence Be Implemented Effectively in Diabetic Retinopathy Screening in Japan? Kawasaki R. Medicina (Kaunas); 2024 Jan 30; 60(2):. PubMed ID: 38399532 [Abstract] [Full Text] [Related]
12. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, Hamzah H, Ho J, Lee XQ, Hsu W, Lee ML, Musonda L, Chandran M, Chipalo-Mutati G, Muma M, Tan GSW, Sivaprasad S, Menon G, Wong TY, Ting DSW. Lancet Digit Health; 2019 May 30; 1(1):e35-e44. PubMed ID: 33323239 [Abstract] [Full Text] [Related]
13. Artificial intelligence for diabetic retinopathy screening: a review. Grzybowski A, Brona P, Lim G, Ruamviboonsuk P, Tan GSW, Abramoff M, Ting DSW. Eye (Lond); 2020 Mar 30; 34(3):451-460. PubMed ID: 31488886 [Abstract] [Full Text] [Related]
14. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R, Li Q, Xu F, Wang S, He J, Cao Y, Shi F, Chen X, Chen J. Biomed Eng Online; 2022 Jul 20; 21(1):47. PubMed ID: 35859144 [Abstract] [Full Text] [Related]
17. Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Islam MM, Yang HC, Poly TN, Jian WS, Jack Li YC. Comput Methods Programs Biomed; 2020 Jul 20; 191():105320. PubMed ID: 32088490 [Abstract] [Full Text] [Related]
18. Impact of Gold-Standard Label Errors on Evaluating Performance of Deep Learning Models in Diabetic Retinopathy Screening: Nationwide Real-World Validation Study. Wang Y, Han X, Li C, Luo L, Yin Q, Zhang J, Peng G, Shi D, He M. J Med Internet Res; 2024 Aug 14; 26():e52506. PubMed ID: 39141915 [Abstract] [Full Text] [Related]
19. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Grzybowski A, Singhanetr P, Nanegrungsunk O, Ruamviboonsuk P. Ophthalmol Ther; 2023 Jun 14; 12(3):1419-1437. PubMed ID: 36862308 [Abstract] [Full Text] [Related]
20. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R, Herrero-Tudela M, López MI, Hornero R, García M. Comput Methods Programs Biomed; 2024 Jun 14; 249():108160. PubMed ID: 38583290 [Abstract] [Full Text] [Related] Page: [Next] [New Search]