These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 38897025

  • 1. In situ comparison of osteogenic effects of polymer-based scaffolds with different degradability by integrated scaffold model.
    Xiao S, Wei J, Liu J, Yuan L, Xia X, Zou Q, Zuo Y, Li Y, Li J.
    Colloids Surf B Biointerfaces; 2024 Sep; 241():114047. PubMed ID: 38897025
    [Abstract] [Full Text] [Related]

  • 2. The ultralong-term comparison of osteogenic behavior of three scaffolds with different matrices and degradability between one and two years.
    Huang J, Wei J, Jin S, Zou Q, Li J, Zuo Y, Li Y.
    J Mater Chem B; 2020 Oct 28; 8(41):9524-9532. PubMed ID: 32996978
    [Abstract] [Full Text] [Related]

  • 3. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J.
    ACS Appl Mater Interfaces; 2019 Oct 16; 11(41):37381-37396. PubMed ID: 31517483
    [Abstract] [Full Text] [Related]

  • 4. The long-term behaviors and differences in bone reconstruction of three polymer-based scaffolds with different degradability.
    Huang J, Xia X, Zou Q, Ma J, Jin S, Li J, Zuo Y, Li Y.
    J Mater Chem B; 2019 Dec 11; 7(48):7690-7703. PubMed ID: 31746935
    [Abstract] [Full Text] [Related]

  • 5. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C, Qian X, Tang Z, Hu Q, Chen J, Gao C, Tang R, Tong X, Wang J.
    J Biomed Nanotechnol; 2014 Jun 11; 10(6):1091-104. PubMed ID: 24749403
    [Abstract] [Full Text] [Related]

  • 6. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B, Wang N, Jiang Q, Tian L, Hu L, Zhang Z.
    J Mater Sci Mater Med; 2021 Jun 07; 32(6):63. PubMed ID: 34097140
    [Abstract] [Full Text] [Related]

  • 7. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology.
    Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, Dai K.
    Biomaterials; 2013 Sep 07; 34(28):6706-16. PubMed ID: 23773816
    [Abstract] [Full Text] [Related]

  • 8. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS.
    Tissue Eng; 2006 Oct 07; 12(10):2997-3006. PubMed ID: 17506618
    [Abstract] [Full Text] [Related]

  • 9. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model.
    Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, Fan JJ, Chen L, Dong X, Liu XN, Pei GX, Ding JD.
    Int J Nanomedicine; 2013 Oct 07; 8():1855-65. PubMed ID: 23690683
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology.
    Shim JH, Moon TS, Yun MJ, Jeon YC, Jeong CM, Cho DW, Huh JB.
    J Mater Sci Mater Med; 2012 Dec 07; 23(12):2993-3002. PubMed ID: 22960800
    [Abstract] [Full Text] [Related]

  • 13. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H.
    J Zhejiang Univ Sci B; 2012 Dec 07; 18(11):963-976. PubMed ID: 29119734
    [Abstract] [Full Text] [Related]

  • 14. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.
    Int J Nanomedicine; 2013 Dec 07; 8():4197-213. PubMed ID: 24204147
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect.
    Shim JH, Kim SE, Park JY, Kundu J, Kim SW, Kang SS, Cho DW.
    Tissue Eng Part A; 2014 Jul 07; 20(13-14):1980-92. PubMed ID: 24517081
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.