These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 38910519
21. Inhibitory effect of black tea pigments, theaflavin‑3/3'-gallate against cisplatin-resistant ovarian cancer cells by inducing apoptosis and G1 cell cycle arrest. Pan H, Wang F, Rankin GO, Rojanasakul Y, Tu Y, Chen YC. Int J Oncol; 2017 Nov; 51(5):1508-1520. PubMed ID: 29048667 [Abstract] [Full Text] [Related]
22. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. Sirk TW, Friedman M, Brown EF. J Agric Food Chem; 2011 Apr 27; 59(8):3780-7. PubMed ID: 21417313 [Abstract] [Full Text] [Related]
24. Antimicrobial mechanism of theaflavins: They target 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway. Hui X, Yue Q, Zhang DD, Li H, Yang SQ, Gao WY. Sci Rep; 2016 Dec 12; 6():38945. PubMed ID: 27941853 [Abstract] [Full Text] [Related]
25. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. Vermeer MA, Mulder TP, Molhuizen HO. J Agric Food Chem; 2008 Dec 24; 56(24):12031-6. PubMed ID: 19049290 [Abstract] [Full Text] [Related]
26. Theaflavins inhibit the ATP synthase and the respiratory chain without increasing superoxide production. Li B, Vik SB, Tu Y. J Nutr Biochem; 2012 Aug 24; 23(8):953-60. PubMed ID: 21924889 [Abstract] [Full Text] [Related]
28. Antiviral activity of theaflavins against Zika virus in vivo and in vitro. Deng X, Lv C, Wang T, Guo J, Luo R, Qi J, Sima M, Yue D, Gao Y. J Infect Chemother; 2024 Jun 24; 30(6):571-578. PubMed ID: 38036028 [Abstract] [Full Text] [Related]
29. Theaflavin-3-gallate, a natural antagonist for Hsp90: In-silico and in-vitro approach. Bhadresha K, Kumar SP, Brahmbhatt J, Patel C, Pandya P, Jain N, Rawal R. Chem Biol Interact; 2022 Feb 01; 353():109774. PubMed ID: 34958756 [Abstract] [Full Text] [Related]
30. Molecular insights into the interactions of theaflavin and epicatechin with different lipid bilayer membranes by molecular dynamics simulation. Nie RZ, Luo HM, Chen JY, Sun LH, Wang ZB, Zhang ZP, Bao YR. Chem Phys Lipids; 2024 Aug 01; 262():105405. PubMed ID: 38795837 [Abstract] [Full Text] [Related]
31. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis. Cai H, Zhong Z, Chen Y, Zhang S, Ling H, Fu H, Zhang L. Int J Biol Macromol; 2023 Jun 15; 240():124353. PubMed ID: 37059281 [Abstract] [Full Text] [Related]
32. Modulatory Effect of Theaflavins on Apical Sodium-Dependent Bile Acid Transporter (ASBT) Activity. Takashima Y, Ishikawa K, Miyawaki R, Ogawa M, Ishii T, Misaka T, Kobayashi S. J Agric Food Chem; 2021 Aug 25; 69(33):9585-9596. PubMed ID: 34346218 [Abstract] [Full Text] [Related]
34. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer. Qu F, Ai Z, Liu S, Zhang H, Chen Y, Wang Y, Ni D. Drug Deliv; 2021 Dec 25; 28(1):1737-1747. PubMed ID: 34463173 [Abstract] [Full Text] [Related]
35. Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3'-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Gao Y, Li W, Jia L, Li B, Chen YC, Tu Y. Biochem Biophys Res Commun; 2013 Aug 23; 438(2):370-4. PubMed ID: 23892041 [Abstract] [Full Text] [Related]
36. Potential anti-hyperglycemic activity of black tea theaflavins through inhibiting α-amylase. Li M, Dong Y, Kang M, Tao T, Li W, Zhang S, Quan W, Liu Z. Food Chem X; 2024 Jun 30; 22():101296. PubMed ID: 38550892 [Abstract] [Full Text] [Related]
37. Effects of theaflavins on the structure and function of bovine lactoferrin. Wang M, Xu J, Han T, Tang L. Food Chem; 2021 Feb 15; 338():128048. PubMed ID: 32950869 [Abstract] [Full Text] [Related]
38. alpha-Glucosidase inhibitory profile of catechins and theaflavins. Matsui T, Tanaka T, Tamura S, Toshima A, Tamaya K, Miyata Y, Tanaka K, Matsumoto K. J Agric Food Chem; 2007 Jan 10; 55(1):99-105. PubMed ID: 17199319 [Abstract] [Full Text] [Related]
39. The human bitter taste receptor hTAS2R39 is the primary receptor for the bitterness of theaflavins. Yamazaki T, Sagisaka M, Ikeda R, Nakamura T, Matsuda N, Ishii T, Nakayama T, Watanabe T. Biosci Biotechnol Biochem; 2014 Jan 10; 78(10):1753-6. PubMed ID: 25273142 [Abstract] [Full Text] [Related]
40. Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: a molecular docking and MMPB/SA based analysis of molecular dynamic simulations. Mude L, Jupudi S, Swaroop AK, Tallapaneni V, Karri VVSR. J Biomol Struct Dyn; 2024 Mar 10; 42(5):2437-2448. PubMed ID: 37160705 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]