These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
172 related items for PubMed ID: 38927635
1. Assessing myBaits Target Capture Sequencing Methodology Using Short-Read Sequencing for Variant Detection in Oat Genomics and Breeding. Mahmood K, Sarup P, Oertelt L, Jahoor A, Orabi J. Genes (Basel); 2024 May 27; 15(6):. PubMed ID: 38927635 [Abstract] [Full Text] [Related]
2. Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Wisniewski Morehead NH, Adhikary D, Jellen EN, Maughan PJ, Brown Guedira GL, Chao S, Beattie AD, Carson ML, Rines HW, Obert DE, Bonman JM, Jackson EW. BMC Genomics; 2011 Jan 27; 12():77. PubMed ID: 21272354 [Abstract] [Full Text] [Related]
3. Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. Clarke WE, Parkin IA, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, Sharpe AG, Snowdon RJ, Federico ML, Iniguez-Luy FL. PLoS One; 2013 Jan 27; 8(12):e81992. PubMed ID: 24312619 [Abstract] [Full Text] [Related]
4. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA. PLoS One; 2014 Jan 27; 9(7):e102448. PubMed ID: 25047601 [Abstract] [Full Text] [Related]
5. A targeted genotyping-by-sequencing tool (Rapture) for genomics-assisted breeding in oat. Bekele WA, Itaya A, Boyle B, Yan W, Mitchell Fetch J, Tinker NA. Theor Appl Genet; 2020 Feb 27; 133(2):653-664. PubMed ID: 31802146 [Abstract] [Full Text] [Related]
6. Genotyping-by-Sequencing and Its Application to Oat Genomic Research. Fu YB, Yang MH. Methods Mol Biol; 2017 Feb 27; 1536():169-187. PubMed ID: 28132151 [Abstract] [Full Text] [Related]
7. Target enrichment sequencing in cultivated peanut (Arachis hypogaea L.) using probes designed from transcript sequences. Peng Z, Fan W, Wang L, Paudel D, Leventini D, Tillman BL, Wang J. Mol Genet Genomics; 2017 Oct 27; 292(5):955-965. PubMed ID: 28492983 [Abstract] [Full Text] [Related]
8. Innovative approach for high-throughput exploiting sex-specific markers in Japanese parrotfish Oplegnathus fasciatus. Xiao Y, Xiao Z, Liu L, Ma Y, Zhao H, Wu Y, Huang J, Xu P, Liu J, Li J. Gigascience; 2024 Jan 02; 13():. PubMed ID: 39028586 [Abstract] [Full Text] [Related]
9. Integration of Technical, Bioinformatic, and Variant Assessment Approaches in the Validation of a Targeted Next-Generation Sequencing Panel for Myeloid Malignancies. Thomas M, Sukhai MA, Zhang T, Dolatshahi R, Harbi D, Garg S, Misyura M, Pugh T, Stockley TL, Kamel-Reid S. Arch Pathol Lab Med; 2017 Jun 02; 141(6):759-775. PubMed ID: 28557600 [Abstract] [Full Text] [Related]
17. Accurate long-read sequencing allows assembly of the duplicated RHD and RHCE genes harboring variants relevant to blood transfusion. Zhang Z, An HH, Vege S, Hu T, Zhang S, Mosbruger T, Jayaraman P, Monos D, Westhoff CM, Chou ST. Am J Hum Genet; 2022 Jan 06; 109(1):180-191. PubMed ID: 34968422 [Abstract] [Full Text] [Related]
18. Comparison of solution-based exome capture methods for next generation sequencing. Sulonen AM, Ellonen P, Almusa H, Lepistö M, Eldfors S, Hannula S, Miettinen T, Tyynismaa H, Salo P, Heckman C, Joensuu H, Raivio T, Suomalainen A, Saarela J. Genome Biol; 2011 Sep 28; 12(9):R94. PubMed ID: 21955854 [Abstract] [Full Text] [Related]