These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 38930996
1. High-Yield Production of Dihydroxyacetone from Crude Glycerol in Fed-Batch Cultures of Gluconobacter oxydans. Górska K, Garncarek Z. Molecules; 2024 Jun 20; 29(12):. PubMed ID: 38930996 [Abstract] [Full Text] [Related]
2. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Hu ZC, Zheng YG. Appl Biochem Biotechnol; 2011 Nov 20; 165(5-6):1152-60. PubMed ID: 21833510 [Abstract] [Full Text] [Related]
3. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation. Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC. Prep Biochem Biotechnol; 2012 Nov 20; 42(1):15-28. PubMed ID: 22239705 [Abstract] [Full Text] [Related]
4. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. Hu ZC, Liu ZQ, Zheng YG, Shen YC. J Microbiol Biotechnol; 2010 Feb 20; 20(2):340-5. PubMed ID: 20208438 [Abstract] [Full Text] [Related]
5. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904. Dikshit PK, Moholkar VS. Bioresour Technol; 2016 Sep 20; 216():1058-65. PubMed ID: 26873288 [Abstract] [Full Text] [Related]
6. Dihydroxyacetone production from glycerol using Gluconobacter oxydans: Study of medium composition and operational conditions in shaken flasks. de la Morena S, Acedos MG, Santos VE, García-Ochoa F. Biotechnol Prog; 2019 Jul 20; 35(4):e2803. PubMed ID: 30840359 [Abstract] [Full Text] [Related]
7. Kinetic analysis of dihydroxyacetone production from crude glycerol by immobilized cells of Gluconobacter oxydans MTCC 904. Dikshit PK, Moholkar VS. Bioresour Technol; 2016 Sep 20; 216():948-57. PubMed ID: 27343447 [Abstract] [Full Text] [Related]
8. Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Zhou X, Xu Y, Yu S. Appl Biochem Biotechnol; 2016 Jan 20; 178(1):1-8. PubMed ID: 26378011 [Abstract] [Full Text] [Related]
9. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). Zhou X, Zhou X, Xu Y, Yu S. Bioprocess Biosyst Eng; 2016 Aug 20; 39(8):1315-8. PubMed ID: 27021347 [Abstract] [Full Text] [Related]
10. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor. Hu ZC, Zheng YG, Shen YC. Bioresour Technol; 2011 Jul 20; 102(14):7177-82. PubMed ID: 21592784 [Abstract] [Full Text] [Related]
11. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Wei S, Song Q, Wei D. Prep Biochem Biotechnol; 2007 Jul 20; 37(2):113-21. PubMed ID: 17454822 [Abstract] [Full Text] [Related]
12. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, Wang G. Bioresour Technol; 2013 Aug 20; 142():384-9. PubMed ID: 23748086 [Abstract] [Full Text] [Related]
13. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans. Dikshit PK, Kharmawlong GJ, Moholkar VS. Bioresour Technol; 2018 May 20; 256():302-311. PubMed ID: 29455098 [Abstract] [Full Text] [Related]
14. [Advance in dihydroxyacetone production by microbial fermentation]. Xu X, Chen X, Jin M, Wu X, Wang X. Sheng Wu Gong Cheng Xue Bao; 2009 Jun 20; 25(6):903-8. PubMed ID: 19777820 [Abstract] [Full Text] [Related]
15. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of Gluconobacter oxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. Hu ZC, Tian SY, Ruan LJ, Zheng YG. Bioresour Technol; 2017 Jun 20; 233():144-149. PubMed ID: 28279907 [Abstract] [Full Text] [Related]
16. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Hekmat D, Bauer R, Fricke J. Bioprocess Biosyst Eng; 2003 Dec 20; 26(2):109-16. PubMed ID: 14598160 [Abstract] [Full Text] [Related]
17. Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol. Zheng XJ, Jin KQ, Zhang L, Wang G, Liu YP. Braz J Microbiol; 2016 Dec 20; 47(1):129-35. PubMed ID: 26887235 [Abstract] [Full Text] [Related]
18. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans. Habe H, Fukuoka T, Morita T, Kitamoto D, Yakushi T, Matsushita K, Sakaki K. Biosci Biotechnol Biochem; 2010 Dec 20; 74(7):1391-5. PubMed ID: 20622460 [Abstract] [Full Text] [Related]
19. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Li MH, Wu J, Liu X, Lin JP, Wei DZ, Chen H. Bioresour Technol; 2010 Nov 20; 101(21):8294-9. PubMed ID: 20576428 [Abstract] [Full Text] [Related]
20. Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis. Lin X, Liu S, Xie G, Chen J, Li P, Chen J. J Microbiol Biotechnol; 2016 Nov 28; 26(11):1908-1917. PubMed ID: 27876710 [Abstract] [Full Text] [Related] Page: [Next] [New Search]