These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 38931127

  • 1. Bifenthrin Residues in Table Grapevine: Method Optimization, Dissipation and Removal of Residues in Grapes and Grape Leaves.
    Alhewairini SS, Abd El-Hamid RM, Ahmed NS, Abdel Ghani SB, Abdallah OI.
    Plants (Basel); 2024 Jun 19; 13(12):. PubMed ID: 38931127
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. LC-MS/MS method for the simultaneous quantification of pyriproxyfen and bifenthrin and their dissipation kinetics under field conditions in chili and brinjal.
    Chaudhary R, Singh R, Singh M, Mogha NK, Kumari P, Paliwal G, Singh PP, Das M.
    J Food Sci; 2022 Mar 19; 87(3):1331-1341. PubMed ID: 35170049
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Dissipation kinetics, safety evaluation, and assessment of pre-harvest interval (PHI) and processing factor for kresoxim methyl residues in grape.
    Sabale R, Shabeer TP, Utture SC, Banerjee K, Jadhav MR, Oulkar DP, Adsule PG, Deshmukh MB.
    Environ Monit Assess; 2014 Apr 19; 186(4):2369-74. PubMed ID: 24287718
    [Abstract] [Full Text] [Related]

  • 6. Development of Green and Facile Sample Preparation Method for Determination of Seven Neonicotinoids in Fresh Vegetables, and Dissipation and Risk Assessment of Imidacloprid and Dinotefuran.
    Abdallah OI, Abd El-Hamid RM, Ahmed NS, Alhewairini SS, Abdel Ghani SB.
    Foods; 2024 Apr 04; 13(7):. PubMed ID: 38611410
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The Effects of Formulation on Imidacloprid Dissipation in Grapes and Vine Leaves and on Required Pre-Harvest Intervals under Lebanese Climatic Conditions.
    Majed L, Hayar S, Zeitoun R, Maestroni BM, Dousset S.
    Molecules; 2021 Dec 31; 27(1):. PubMed ID: 35011487
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous Detection of Multiple Plant Growth Regulator Residues in Cabbage and Grape Using an Optimal QuEChERS Sample Preparation and UHPLC-MS/MS Method.
    Zhan XP, Liu B, Zhu WF, Chen JB, Ma L, Zhao L, Huang LQ, Chen X.
    J AOAC Int; 2022 Feb 04; 105(1):129-141. PubMed ID: 34519786
    [Abstract] [Full Text] [Related]

  • 10. Dissipation behaviors of deltamethrin, emamectin benzoate and hexythiazox in grape under field conditions.
    Balkan T, Yağcı A, Kara K.
    J Environ Sci Health B; 2024 Feb 04; 59(3):123-129. PubMed ID: 38287657
    [Abstract] [Full Text] [Related]

  • 11. Residue behavior and risk assessment of validamycin a in grape under field conditions.
    Yu J, Xu Z, Zhang C, Chen L, Hu X, Yu R, Zhao X.
    J Environ Sci Health B; 2021 Feb 04; 56(6):587-593. PubMed ID: 34102954
    [Abstract] [Full Text] [Related]

  • 12. Decline pattern and dietary risk assessment of spinetoram in grapes under Egyptian field conditions.
    Malhat F, Saber AN, Hegazy A, Saber ES, Heikal S, Elgammal H, Hussien M.
    Environ Monit Assess; 2024 Sep 01; 196(9):873. PubMed ID: 39218961
    [Abstract] [Full Text] [Related]

  • 13. Determination of chlorpyrifos-methyl, lambda-cyhalothrin and tebuconazole residues in Sultana seedless grapes sprayed with pesticides under farmer's conditions.
    Duman A, Tiryaki O.
    J Environ Sci Health B; 2022 Sep 01; 57(4):325-332. PubMed ID: 35293832
    [Abstract] [Full Text] [Related]

  • 14. [Determination of streptomycin and dihydrostreptomycin in grapes by liquid chromatography-tandem mass spectrometry].
    Liu Z, Qi P, He F, Wang Z, Di S, Xu H, Zhao H, Wang Q, Wang X.
    Se Pu; 2020 Dec 08; 38(12):1396-1401. PubMed ID: 34213254
    [Abstract] [Full Text] [Related]

  • 15. Pesticide Residues in Table Grapes and Exposure Assessment.
    Golge O, Kabak B.
    J Agric Food Chem; 2018 Feb 21; 66(7):1701-1713. PubMed ID: 29364655
    [Abstract] [Full Text] [Related]

  • 16. Residues of spiroxamine in grapes following field application and their fate from vine to wine.
    Tsiropoulos NG, Miliadis GE, Likas DT, Liapis K.
    J Agric Food Chem; 2005 Dec 28; 53(26):10091-6. PubMed ID: 16366700
    [Abstract] [Full Text] [Related]

  • 17. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique.
    Chen X, He S, Gao Y, Ma Y, Hu J, Liu X.
    Food Chem; 2019 Feb 15; 274():291-297. PubMed ID: 30372941
    [Abstract] [Full Text] [Related]

  • 18. Degradation kinetics and safety evaluation of buprofezin residues in grape (Vitis vinifera L.) and three different soils of India.
    Oulkar DP, Banerjee K, Patil SH, Upadhyay AK, Taware PB, Deshmukh MB, Adsule PG.
    Pest Manag Sci; 2009 Feb 15; 65(2):183-8. PubMed ID: 18942051
    [Abstract] [Full Text] [Related]

  • 19. Optimization of QuEChERS method for determination of pesticide residues in vegetables and health risk assessment.
    Perumal S, Kottadiyil D, Thasale R, Mehta T.
    Environ Sci Pollut Res Int; 2024 May 15; 31(23):34355-34367. PubMed ID: 38700766
    [Abstract] [Full Text] [Related]

  • 20. Fate of multi-residue insecticides and their metabolites in the process of vinification: Analytical method validation, dissipation kinetics, processing factor, and risk assessment.
    Ahammed Shabeer TP, Hingmire S, Taynath B, Deshmukh U, Somkuwar R, Sharma AK.
    Environ Pollut; 2024 Jul 01; 352():124122. PubMed ID: 38723707
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.