These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 38931636

  • 21. Murmur identification and outcome prediction in phonocardiograms using deep features based on Stockwell transform.
    Manshadi OD, Mihandoost S.
    Sci Rep; 2024 Mar 31; 14(1):7592. PubMed ID: 38555390
    [Abstract] [Full Text] [Related]

  • 22. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S, Li G, Zhang X, Huang S, Zheng H, Ma K, Xie L.
    J Neuroeng Rehabil; 2019 Nov 04; 16(1):131. PubMed ID: 31684970
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals.
    Ghosh SK, Ponnalagu RN, Tripathy RK, Acharya UR.
    Comput Biol Med; 2020 Mar 04; 118():103632. PubMed ID: 32174311
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines.
    Derya Ubeyli E.
    Comput Biol Med; 2008 Jan 04; 38(1):14-22. PubMed ID: 17651716
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Automatic feed phase identification in multivariate bioprocess profiles by sequential binary classification.
    Nikzad-Langerodi R, Lughofer E, Saminger-Platz S, Zahel T, Sagmeister P, Herwig C.
    Anal Chim Acta; 2017 Aug 22; 982():48-61. PubMed ID: 28734365
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features.
    Herbuela VRDM, Karita T, Furukawa Y, Wada Y, Toya A, Senba S, Onishi E, Saeki T.
    PLoS One; 2022 Aug 22; 17(6):e0269472. PubMed ID: 35771797
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Phonocardiogram transfer learning-based CatBoost model for diastolic dysfunction identification using multiple domain-specific deep feature fusion.
    Zheng Y, Guo X, Yang Y, Wang H, Liao K, Qin J.
    Comput Biol Med; 2023 Apr 22; 156():106707. PubMed ID: 36871337
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Automated signal quality assessment of mobile phone-recorded heart sound signals.
    Springer DB, Brennan T, Ntusi N, Abdelrahman HY, Zühlke LJ, Mayosi BM, Tarassenko L, Clifford GD.
    J Med Eng Technol; 2016 Apr 22; 40(7-8):342-355. PubMed ID: 27659352
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Comparison of logistic regression, support vector machines, and deep learning classifiers for predicting memory encoding success using human intracranial EEG recordings.
    Arora A, Lin JJ, Gasperian A, Maldjian J, Stein J, Kahana M, Lega B.
    J Neural Eng; 2018 Dec 22; 15(6):066028. PubMed ID: 30211695
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.