These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with superior yield and grain quality. Huang J, Gao L, Luo S, Liu K, Qing D, Pan Y, Dai G, Deng G, Zhu C. Mol Breed; 2022 Apr; 42(4):22. PubMed ID: 37309462 [Abstract] [Full Text] [Related]
3. A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. Wang C, Wang Z, Cai Y, Zhu Z, Yu D, Hong L, Wang Y, Lv W, Zhao Q, Si L, Liu K, Han B. Plant Biotechnol J; 2024 Jun; 22(6):1669-1680. PubMed ID: 38450899 [Abstract] [Full Text] [Related]
4. Enhancing grain shape, thermotolerance, and alkaline tolerance via Gγ protein manipulation in rice. Xu N, Qiu Y, Cui X, Fei C, Xu Q. Theor Appl Genet; 2024 Jun 10; 137(7):154. PubMed ID: 38856926 [Abstract] [Full Text] [Related]
5. A minor QTL, SG3, encoding an R2R3-MYB protein, negatively controls grain length in rice. Li Q, Lu L, Liu H, Bai X, Zhou X, Wu B, Yuan M, Yang L, Xing Y. Theor Appl Genet; 2020 Aug 10; 133(8):2387-2399. PubMed ID: 32472264 [Abstract] [Full Text] [Related]
10. Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes. Wang S, Ma B, Gao Q, Jiang G, Zhou L, Tu B, Qin P, Tan X, Liu P, Kang Y, Wang Y, Chen W, Liang C, Li S. Theor Appl Genet; 2018 Jun 10; 131(6):1391-1403. PubMed ID: 29546444 [Abstract] [Full Text] [Related]
11. CRISPR-mediated accelerated domestication of African rice landraces. Lacchini E, Kiegle E, Castellani M, Adam H, Jouannic S, Gregis V, Kater MM. PLoS One; 2020 Jun 10; 15(3):e0229782. PubMed ID: 32126126 [Abstract] [Full Text] [Related]
12. Programmed Editing of Rice (Oryza sativa L.) OsSPL16 Gene Using CRISPR/Cas9 Improves Grain Yield by Modulating the Expression of Pyruvate Enzymes and Cell Cycle Proteins. Usman B, Nawaz G, Zhao N, Liao S, Qin B, Liu F, Liu Y, Li R. Int J Mol Sci; 2020 Dec 29; 22(1):. PubMed ID: 33383688 [Abstract] [Full Text] [Related]
13. Control of grain size, shape and quality by OsSPL16 in rice. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Nat Genet; 2012 Jun 24; 44(8):950-4. PubMed ID: 22729225 [Abstract] [Full Text] [Related]
14. Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang YD, Zheng J, Liang ZK, Liang YL, Peng ZH, Wang CL. Genet Mol Res; 2015 Nov 23; 14(4):14882-92. PubMed ID: 26600549 [Abstract] [Full Text] [Related]
17. Enhanced Expression of QTL qLL9/DEP1 Facilitates the Improvement of Leaf Morphology and Grain Yield in Rice. Fu X, Xu J, Zhou M, Chen M, Shen L, Li T, Zhu Y, Wang J, Hu J, Zhu L, Gao Z, Dong G, Guo L, Ren D, Chen G, Lin J, Qian Q, Zhang G. Int J Mol Sci; 2019 Feb 17; 20(4):. PubMed ID: 30781568 [Abstract] [Full Text] [Related]
18. Effect of multi-allele combination on rice grain size based on prediction of regression equation model. Zhong H, Liu C, Kong W, Zhang Y, Zhao G, Sun T, Li Y. Mol Genet Genomics; 2020 Mar 17; 295(2):465-474. PubMed ID: 31863176 [Abstract] [Full Text] [Related]