These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Changes in α-Farnesene and Phenolic Metabolism and the Expression of Associated Genes during the Development of Superficial Scald in Two Distinct Pear Cultivars. He J, Feng Y, Cheng Y, Karuppanapandian T, Wang J, Guan J. Int J Mol Sci; 2022 Oct 11; 23(20):. PubMed ID: 36292939 [Abstract] [Full Text] [Related]
4. [Hyperspectral technology combined with CARS algorithm to quantitatively determine the SSC in Korla fragrant pear]. Zhan BS, Ni JH, Li J. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct 11; 34(10):2752-7. PubMed ID: 25739220 [Abstract] [Full Text] [Related]
7. [Huanghua pear soluble solids contents Vis/NIR spectroscopy by analysis of variables optimization and FICA]. Xu WL, Sun T, Hu T, Hu T, Liu MH. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec 11; 34(12):3253-6. PubMed ID: 25881418 [Abstract] [Full Text] [Related]
8. Fruit bagging reduces the postharvest decay and alters the diversity of fruit surface fungal community in 'Yali' pear. Gao C, Zhang Y, Li H, Gao Q, Cheng Y, Ogunyemi SO, Guan J. BMC Microbiol; 2022 Oct 05; 22(1):239. PubMed ID: 36199024 [Abstract] [Full Text] [Related]
10. [Near-infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in "Ya" pear]. Li JB, Peng YK, Chen LP, Huang WQ. Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May 05; 34(5):1264-9. PubMed ID: 25095419 [Abstract] [Full Text] [Related]
11. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Wang Z, Fan S, Wu J, Zhang C, Xu F, Yang X, Li J. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun 05; 254():119666. PubMed ID: 33744703 [Abstract] [Full Text] [Related]
12. A comprehensive insight on the main physiological biochemical and related genes expression changes during the development of superficial scald in "Yali" pear. He J, Feng Y, Cheng Y, Wang M, Guan J. Front Plant Sci; 2022 Jun 05; 13():987240. PubMed ID: 36119567 [Abstract] [Full Text] [Related]
13. Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid reactive substances in rainbow trout fillets by hyperspectral imaging technique. Khoshnoudi-Nia S, Moosavi-Nasab M. Food Sci Nutr; 2019 May 05; 7(5):1875-1883. PubMed ID: 31139402 [Abstract] [Full Text] [Related]
15. Determination of sugar content in Lingwu jujube by NIR-hyperspectral imaging. Yang X, Liu G, He J, Kang N, Yuan R, Fan N. J Food Sci; 2021 Apr 05; 86(4):1201-1214. PubMed ID: 33770419 [Abstract] [Full Text] [Related]
16. Discrimination of wheat flour grade based on PSO-SVM of hyperspectral technique. Zhang S, Yin Y, Liu C, Li J, Sun X, Wu J. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec 05; 302():123050. PubMed ID: 37379715 [Abstract] [Full Text] [Related]
19. Estimation Model for Maize Multi-Components Based on Hyperspectral Data. Xue H, Xu X, Meng X. Sensors (Basel); 2024 Sep 21; 24(18):. PubMed ID: 39338856 [Abstract] [Full Text] [Related]
20. Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging. Huang H, Hu X, Tian J, Jiang X, Sun T, Luo H, Huang D. Food Chem; 2021 Oct 15; 359():129954. PubMed ID: 33964659 [Abstract] [Full Text] [Related] Page: [Next] [New Search]