These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 3894342

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM, Patel MA, Woodard RW.
    Biochemistry; 1996 Jul 09; 35(27):8942-7. PubMed ID: 8688430
    [Abstract] [Full Text] [Related]

  • 6. Bromopyruvate as an active-site-directed inhibitor of the pyruvate dehydrogenase multienzyme complex from Escherichia coli.
    Lowe PN, Perham RN.
    Biochemistry; 1984 Jan 03; 23(1):91-7. PubMed ID: 6362725
    [Abstract] [Full Text] [Related]

  • 7. The interaction of Escherichia coli tryptophanase with various amino and their analogs. Active site mapping.
    Watanabe T, Snell EE.
    J Biochem; 1977 Sep 03; 82(3):733-45. PubMed ID: 334760
    [No Abstract] [Full Text] [Related]

  • 8. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites.
    Pettigrew DW.
    Biochemistry; 1986 Aug 12; 25(16):4711-8. PubMed ID: 3021201
    [Abstract] [Full Text] [Related]

  • 9. Functional role of cysteinyl residues in tryptophanase.
    Nihira T, Yasuda T, Kakizono T, Taguchi H, Ichikawa M, Toraya T, Fukui S.
    Eur J Biochem; 1985 May 15; 149(1):129-33. PubMed ID: 3888623
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Active-site-directed inhibition of phosphoenolpyruvate carboxylase from maize leaves by bromopyruvate.
    Gonzalez DH, Iglesias AA, Andreo CS.
    Arch Biochem Biophys; 1986 Feb 15; 245(1):179-86. PubMed ID: 3947097
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli.
    Mizuta K, Tokushige M.
    Biochim Biophys Acta; 1975 Sep 22; 403(1):221-31. PubMed ID: 240429
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M, Tokushige M, Katsuki H.
    J Biochem; 1979 Nov 22; 86(5):1239-49. PubMed ID: 42642
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Active-site residues of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli. Bromopyruvate inactivation and labeling of glutamate 45.
    Vlahos CJ, Dekker EE.
    J Biol Chem; 1990 Nov 25; 265(33):20384-9. PubMed ID: 1978721
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.