These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


436 related items for PubMed ID: 3896131

  • 1. The creatine-creatine phosphate energy shuttle.
    Bessman SP, Carpenter CL.
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract] [Full Text] [Related]

  • 2. Interaction of creatine kinase and adenylate kinase systems in muscle cells.
    Savabi F.
    Mol Cell Biochem; 1994; 133-134():145-52. PubMed ID: 7808452
    [Abstract] [Full Text] [Related]

  • 3. [Creatine kinase system and muscle energy metabolism].
    Chetverikova EP.
    Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505
    [No Abstract] [Full Text] [Related]

  • 4. [Dependence of creatine kinase and glycogen synthetase activities of skeletal muscles on state of adenine nucleotide phosphorylation and cAMP metabolism].
    Iakovlev NN, Chagovets NR, Maksimova LV.
    Ukr Biokhim Zh (1978); 1980; 52(3):293-8. PubMed ID: 6247797
    [Abstract] [Full Text] [Related]

  • 5. Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog.
    Piiper J, Di Prampero PE, Cerretelli P.
    Am J Physiol; 1968 Sep; 215(3):523-31. PubMed ID: 5670989
    [No Abstract] [Full Text] [Related]

  • 6. A possible role of the creatine phosphate-creatine pool in the regulation of the adenylate pool.
    Pezzini A, Conte A, Galbani P, Ronca-Testoni S.
    Int J Tissue React; 1988 Sep; 10(2):107-10. PubMed ID: 3182186
    [Abstract] [Full Text] [Related]

  • 7. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S, Geiger P, Yang WC, Bessman SP.
    Adv Exp Med Biol; 1982 Sep; 151():115-25. PubMed ID: 6217725
    [No Abstract] [Full Text] [Related]

  • 8. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW, Murray TW.
    J Biol Chem; 1974 Sep 25; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract] [Full Text] [Related]

  • 9. Compartmentation of high-energy phosphates in resting and beating heart cells.
    Arrio-Dupont M, De Nay D.
    Biochim Biophys Acta; 1986 Sep 10; 851(2):249-56. PubMed ID: 3488761
    [Abstract] [Full Text] [Related]

  • 10. The creatine phosphate energy shuttle--the molecular asymmetry of a "pool".
    Bessman SP.
    Anal Biochem; 1987 Mar 10; 161(2):519-23. PubMed ID: 3578809
    [Abstract] [Full Text] [Related]

  • 11. Transport of energy in muscle: the phosphorylcreatine shuttle.
    Bessman SP, Geiger PJ.
    Science; 1981 Jan 30; 211(4481):448-52. PubMed ID: 6450446
    [Abstract] [Full Text] [Related]

  • 12. [The energy metabolism of skeletal muscle in relation to aging].
    Honorati MC, Ermini M, Stecconi R.
    Boll Soc Ital Biol Sper; 1973 Oct 30; 49(20):1134-40. PubMed ID: 4802342
    [No Abstract] [Full Text] [Related]

  • 13. Effect of a short-term dietary creatine supplementation on high-energy phosphates in the rat myocardium.
    Brzezińska Z, Nazar K, Kaciuba-Uściłko H, Falecka-Wieczorek I, Wójcik-Ziółkowska E.
    J Physiol Pharmacol; 1998 Dec 30; 49(4):591-5. PubMed ID: 10069699
    [Abstract] [Full Text] [Related]

  • 14. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions.
    Gorselink M, Drost MR, van der Vusse GJ.
    Pflugers Arch; 2001 Nov 30; 443(2):274-9. PubMed ID: 11713654
    [Abstract] [Full Text] [Related]

  • 15. The myopathy of phosphate depletion.
    Brautbar N, Massry SG.
    Adv Exp Med Biol; 1984 Nov 30; 178():363-75. PubMed ID: 6507165
    [No Abstract] [Full Text] [Related]

  • 16. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R, Kuznetsov A, Veksler V, Boehm E, Anflous K.
    Mol Cell Biochem; 1998 Jul 30; 184(1-2):231-47. PubMed ID: 9746324
    [Abstract] [Full Text] [Related]

  • 17. Cause and consequences of dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space in respect to exchange of energy rich phosphates between cytosol and mitochondria.
    Gellerich FN, Kunz W.
    Biomed Biochim Acta; 1987 Jul 30; 46(8-9):S545-8. PubMed ID: 3435511
    [Abstract] [Full Text] [Related]

  • 18. Phosphate metabolism in the electric organ.
    Cheng SC, Keynes RD.
    Biochim Biophys Acta; 1967 Jul 05; 143(1):249-56. PubMed ID: 4292785
    [No Abstract] [Full Text] [Related]

  • 19. Creatine phosphate and adenine nucleotides in muscle from animals with muscular dystrophy.
    Farrell PM, Olson RE.
    Am J Physiol; 1973 Nov 05; 225(5):1102-6. PubMed ID: 4745208
    [No Abstract] [Full Text] [Related]

  • 20. Compartmentation of adenine nucleotides and phosphocreatine shuttle in cardiac cells: some new evidence.
    Saks VA, Kuznetsov AV, Huchua ZA, Kupriyanov VV.
    Adv Exp Med Biol; 1986 Nov 05; 194():103-16. PubMed ID: 3529852
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.