These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 38968091

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. BayeshERG: a robust, reliable and interpretable deep learning model for predicting hERG channel blockers.
    Kim H, Park M, Lee I, Nam H.
    Brief Bioinform; 2022 Jul 18; 23(4):. PubMed ID: 35709752
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints.
    Liu M, Zhang L, Li S, Yang T, Liu L, Zhao J, Liu H.
    Toxicol Lett; 2020 Oct 10; 332():88-96. PubMed ID: 32629073
    [Abstract] [Full Text] [Related]

  • 9. In silico prediction of hERG blockers using machine learning and deep learning approaches.
    Chen Y, Yu X, Li W, Tang Y, Liu G.
    J Appl Toxicol; 2023 Oct 10; 43(10):1462-1475. PubMed ID: 37093028
    [Abstract] [Full Text] [Related]

  • 10. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY, Su BH, Esposito EX, Hopfinger AJ, Tseng YJ.
    Chem Res Toxicol; 2011 Jun 20; 24(6):934-49. PubMed ID: 21504223
    [Abstract] [Full Text] [Related]

  • 11. The Catch-22 of Predicting hERG Blockade Using Publicly Accessible Bioactivity Data.
    Siramshetty VB, Chen Q, Devarakonda P, Preissner R.
    J Chem Inf Model; 2018 Jun 25; 58(6):1224-1233. PubMed ID: 29772901
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity.
    Ryu JY, Lee MY, Lee JH, Lee BH, Oh KS.
    Bioinformatics; 2020 May 01; 36(10):3049-3055. PubMed ID: 32022860
    [Abstract] [Full Text] [Related]

  • 15. Enhancing hERG Risk Assessment with Interpretable Classificatory and Regression Models.
    Sanches IH, Braga RC, Alves VM, Andrade CH.
    Chem Res Toxicol; 2024 Jun 17; 37(6):910-922. PubMed ID: 38781421
    [Abstract] [Full Text] [Related]

  • 16. A critical assessment of combined ligand- and structure-based approaches to HERG channel blocker modeling.
    Du-Cuny L, Chen L, Zhang S.
    J Chem Inf Model; 2011 Nov 28; 51(11):2948-60. PubMed ID: 21902220
    [Abstract] [Full Text] [Related]

  • 17. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models.
    Zhang X, Mao J, Wei M, Qi Y, Zhang JZH.
    J Chem Inf Model; 2022 Apr 25; 62(8):1830-1839. PubMed ID: 35404051
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Open-Access Activity Prediction Tools for Natural Products. Case Study: hERG Blockers.
    Mayr F, Vieider C, Temml V, Stuppner H, Schuster D.
    Prog Chem Org Nat Prod; 2019 Apr 25; 110():177-238. PubMed ID: 31621014
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.