These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 38970480
1. Nanozyme-Inhibited SERS Multichannel Paper-Based Sensor Array for the Quantification and Identification of Biothiols and Cancer Cells Based on Three Ag-Based Nanomaterials. Wang L, Chen Y, Ji Y, Wang L, Liu X, Wang F, Li C. Anal Chem; 2024 Jul 16; 96(28):11353-11365. PubMed ID: 38970480 [Abstract] [Full Text] [Related]
2. Cheap and portable paper chip with terrific oxidase-like activity and SERS enhancement performance for SERS-colorimetric bimodal detection of intracellular glutathione. Wang L, Chen Y, Ji Y, Zheng S, Wang F, Li C. Biosens Bioelectron; 2024 Jan 15; 244():115817. PubMed ID: 37944354 [Abstract] [Full Text] [Related]
3. A facile SERS strategy for quantitative analysis of trace glucose coupling glucose oxidase and nanosilver catalytic oxidation of tetramethylbenzidine. Yao D, Li C, Liang A, Jiang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 05; 216():146-153. PubMed ID: 30889435 [Abstract] [Full Text] [Related]
4. Plasmonic Azobenzene Chemoreporter for Surface-Enhanced Raman Scattering Detection of Biothiols. Turino M, Alvarez-Puebla RA, Guerrini L. Biosensors (Basel); 2022 Apr 22; 12(5):. PubMed ID: 35624568 [Abstract] [Full Text] [Related]
5. Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Shen Y, Yue J, Shi W, Xu W, Xu S. Biosens Bioelectron; 2020 Mar 01; 151():111957. PubMed ID: 31868606 [Abstract] [Full Text] [Related]
6. Carbon Nanodots-Based Fluorescent Turn-On Sensor Array for Biothiols. Wu Y, Liu X, Wu Q, Yi J, Zhang G. Anal Chem; 2017 Jul 05; 89(13):7084-7089. PubMed ID: 28602089 [Abstract] [Full Text] [Related]
7. Interfacial deposition of Ag nanozyme on metal-polyphenol nanosphere for SERS detection of cellular glutathione. Li Y, Li P, Chen Y, Wu Y, Wei J. Biosens Bioelectron; 2023 May 15; 228():115200. PubMed ID: 36921386 [Abstract] [Full Text] [Related]
8. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Qi G, Wang Y, Zhang B, Sun D, Fu C, Xu W, Xu S. Anal Bioanal Chem; 2016 Oct 15; 408(26):7513-20. PubMed ID: 27518716 [Abstract] [Full Text] [Related]
9. Sensitive and label-free quantification of cellular biothiols by competitive surface-enhanced Raman spectroscopy. Zhao J, Zhang K, Ji J, Liu B. Talanta; 2016 May 15; 152():196-202. PubMed ID: 26992511 [Abstract] [Full Text] [Related]
10. A rainbow ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of biothiols. Abbasi-Moayed S, Golmohammadi H, Bigdeli A, Hormozi-Nezhad MR. Analyst; 2018 Jul 21; 143(14):3415-3424. PubMed ID: 29915832 [Abstract] [Full Text] [Related]
11. Nanozyme sensor array based on Fe, Se co-doped carbon material for the discrimination of Sulfur-containing compounds. Ren E, Qiu H, Yu Z, Cao M, Sohail M, Lu GP, Zhang X, Lin Y. J Hazard Mater; 2024 May 15; 470():134127. PubMed ID: 38554521 [Abstract] [Full Text] [Related]
12. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Wang A, Guan C, Shan G, Chen Y, Wang C, Liu Y. Mikrochim Acta; 2019 Aug 24; 186(9):644. PubMed ID: 31446498 [Abstract] [Full Text] [Related]
13. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood. Kuligowski J, El-Zahry MR, Sánchez-Illana Á, Quintás G, Vento M, Lendl B. Analyst; 2016 Apr 07; 141(7):2165-74. PubMed ID: 26911321 [Abstract] [Full Text] [Related]
14. Construction of a Carcinoembryonic Antigen Surface-Enhanced Raman Spectroscopy (SERS) Aptamer Sensor Based on the Silver Nanorod Array Chip. Li R, Li L, Zhang Y, Lin X, Guo H, Lin C, Feng J. Appl Spectrosc; 2023 Feb 07; 77(2):170-177. PubMed ID: 36138574 [Abstract] [Full Text] [Related]
15. Paper-Based SERS Sensing Platform Based on 3D Silver Dendrites and Molecularly Imprinted Identifier Sandwich Hybrid for Neonicotinoid Quantification. Zhao P, Liu H, Zhang L, Zhu P, Ge S, Yu J. ACS Appl Mater Interfaces; 2020 Feb 19; 12(7):8845-8854. PubMed ID: 31989810 [Abstract] [Full Text] [Related]
16. Sensitive SERS assay for L-cysteine based on functionalized silver nanoparticles. Chen Y, Wang H, Zhou J, Lin D, Zhang L, Xing Z, Zhang Q, Xia L. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct 05; 318():124487. PubMed ID: 38805989 [Abstract] [Full Text] [Related]
17. An Au bipyramids@CuZn MOF core-shell nanozyme enables universal SERS and a colorimetric dual-model bioassay. Wang M, Shi F, Li J, Min L, Yang Z, Li J. Chem Commun (Camb); 2024 Jun 06; 60(47):6019-6022. PubMed ID: 38774998 [Abstract] [Full Text] [Related]
18. Gold alloy-based nanozyme sensor arrays for biothiol detection. Lin J, Wang Q, Wang X, Zhu Y, Zhou X, Wei H. Analyst; 2020 Jun 07; 145(11):3916-3921. PubMed ID: 32301943 [Abstract] [Full Text] [Related]
19. Self-assembled silver nanochains for surface-enhanced Raman scattering. Yang Y, Shi J, Tanaka T, Nogami M. Langmuir; 2007 Nov 20; 23(24):12042-7. PubMed ID: 17963408 [Abstract] [Full Text] [Related]
20. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Shen LM, Chen Q, Sun ZY, Chen XW, Wang JH. Anal Chem; 2014 May 20; 86(10):5002-8. PubMed ID: 24773228 [Abstract] [Full Text] [Related] Page: [Next] [New Search]