These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 38971267

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
    Liu Z, Feng B, Li C, Chen Y, Chen Q, Li X, Guan J, Chen X, Cui E, Li R, Li Z, Long W.
    J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Prediction of lymphovascular invasion in invasive breast cancer based on clinical-MRI radiomics features.
    Zhang C, Zhou P, Li R, Li Z, Ouyang A.
    BMC Med Imaging; 2024 Oct 16; 24(1):277. PubMed ID: 39415127
    [Abstract] [Full Text] [Related]

  • 7. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram.
    Liu Y, Li X, Zhu L, Zhao Z, Wang T, Zhang X, Cai B, Li L, Ma M, Ma X, Ming J.
    Contrast Media Mol Imaging; 2022 Oct 16; 2022():6729473. PubMed ID: 36051932
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma.
    Zhang J, Wang G, Ren J, Yang Z, Li D, Cui Y, Yang X.
    Eur Radiol; 2022 Jun 16; 32(6):4079-4089. PubMed ID: 35050415
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics.
    Chen W, Lin G, Kong C, Wu X, Hu Y, Chen M, Xia S, Lu C, Xu M, Ji J.
    Br J Radiol; 2024 Feb 02; 97(1154):439-450. PubMed ID: 38308028
    [Abstract] [Full Text] [Related]

  • 13. A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions.
    Liu W, Li L, Deng J, Li W.
    Comput Med Imaging Graph; 2024 Sep 02; 116():102415. PubMed ID: 39032451
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Value of radiomics based on CE-MRI for predicting the efficacy of neoadjuvant chemotherapy in invasive breast cancer.
    Li Q, Huang Y, Xiao Q, Duan S, Wang S, Li J, Niu Q, Gu Y.
    Br J Radiol; 2022 Oct 01; 95(1139):20220186. PubMed ID: 36005646
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.