These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 38977660

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Very long wave infrared quantum dot photodetector up to 18 μm.
    Xue X, Hao Q, Chen M.
    Light Sci Appl; 2024 Apr 12; 13(1):89. PubMed ID: 38609412
    [Abstract] [Full Text] [Related]

  • 3. Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors.
    Ackerman MM, Tang X, Guyot-Sionnest P.
    ACS Nano; 2018 Jul 24; 12(7):7264-7271. PubMed ID: 29975502
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors.
    Xu K, Ke L, Dou H, Xu R, Zhou W, Wei Q, Sun X, Wang H, Wu H, Li L, Xue J, Chen B, Weng TC, Zheng L, Yu Y, Ning Z.
    ACS Appl Mater Interfaces; 2022 Mar 30; 14(12):14783-14790. PubMed ID: 35290029
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots.
    Yu M, Yang J, Zhang X, Yuan M, Zhang J, Gao L, Tang J, Lan X.
    Adv Mater; 2024 Jul 30; 36(27):e2311830. PubMed ID: 38501495
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y, Vafaie M, Xu J, Pina JM, Xia P, Najarian AM, Atan O, Imran M, Xie K, Hoogland S, Sargent EH.
    Adv Mater; 2022 Nov 30; 34(47):e2206884. PubMed ID: 36134538
    [Abstract] [Full Text] [Related]

  • 11. High-Performance Visible to Mid-Infrared Photodetectors Based on HgTe Colloidal Quantum Dots under Room Temperature.
    Xia K, Gao XD, Fei GT, Xu SH, Liang YF, Qu XX.
    ACS Appl Mater Interfaces; 2024 Apr 26. PubMed ID: 38669621
    [Abstract] [Full Text] [Related]

  • 12. Halide-Driven Synthetic Control of InSb Colloidal Quantum Dots Enables Short-Wave Infrared Photodetectors.
    Muhammad, Choi D, Parmar DH, Rehl B, Zhang Y, Atan O, Kim G, Xia P, Pina JM, Li M, Liu Y, Voznyy O, Hoogland S, Sargent EH.
    Adv Mater; 2023 Nov 26; 35(46):e2306147. PubMed ID: 37734861
    [Abstract] [Full Text] [Related]

  • 13. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors.
    Sliz R, Lejay M, Fan JZ, Choi MJ, Kinge S, Hoogland S, Fabritius T, García de Arquer FP, Sargent EH.
    ACS Nano; 2019 Oct 22; 13(10):11988-11995. PubMed ID: 31545597
    [Abstract] [Full Text] [Related]

  • 14. MoS2 -HgTe Quantum Dot Hybrid Photodetectors beyond 2 µm.
    Huo N, Gupta S, Konstantatos G.
    Adv Mater; 2017 May 22; 29(17):. PubMed ID: 28247438
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Mid- and Long-Wave Infrared Optoelectronics via Intraband Transitions in PbS Colloidal Quantum Dots.
    Ramiro I, Özdemir O, Christodoulou S, Gupta S, Dalmases M, Torre I, Konstantatos G.
    Nano Lett; 2020 Feb 12; 20(2):1003-1008. PubMed ID: 31934762
    [Abstract] [Full Text] [Related]

  • 18. InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors.
    Peng L, Wang Y, Ren Y, Wang Z, Cao P, Konstantatos G.
    ACS Nano; 2024 Feb 13; 18(6):5113-5121. PubMed ID: 38305195
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.