These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 38990867

  • 1. Development of low-cost micro-fabrication procedures for planar micro-thermoelectric generators based on thin-film technology for energy harvesting applications.
    Abdelkader SM, Nayebare D, Megahed TF, El-Bab AMRF, Ismeil MA, Abdel-Rahim O.
    PLoS One; 2024; 19(7):e0306540. PubMed ID: 38990867
    [Abstract] [Full Text] [Related]

  • 2. Novel Thermoelectric Fabric Structure with Switched Thermal Gradient Direction toward Wearable In-Plane Thermoelectric Generators.
    Ding D, Wu Q, Li Q, Chen Y, Zhi C, Wei X, Wang J.
    Small; 2024 May; 20(22):e2306830. PubMed ID: 38126556
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Enhanced performance of dispenser printed MA n-type Bi₂Te₃ composite thermoelectric generators.
    Madan D, Wang Z, Chen A, Juang RC, Keist J, Wright PK, Evans JW.
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6117-24. PubMed ID: 23130550
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. High-Performance W-Doped Bi0.5Sb1.5Te3 Flexible Thermoelectric Films and Generators.
    Liu Z, Zhang Y, Xue FN, Liu T, Ding X, Lu Y, Zhang JC, Xu FJ.
    ACS Appl Mater Interfaces; 2024 May 22; 16(20):26025-26033. PubMed ID: 38717862
    [Abstract] [Full Text] [Related]

  • 12. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation.
    Zhu S, Peng Y, Gao J, Miao L, Lai H, Liu C, Zhang J, Zhang Y, Zhou S, Koumoto K, Zhu T.
    ACS Appl Mater Interfaces; 2022 Jan 12; 14(1):1045-1055. PubMed ID: 34965726
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities.
    Ren W, Sun Y, Zhao D, Aili A, Zhang S, Shi C, Zhang J, Geng H, Zhang J, Zhang L, Xiao J, Yang R.
    Sci Adv; 2021 Feb 12; 7(7):. PubMed ID: 33568483
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A Miniaturized 0.78-mW/cm2 Autonomous Thermoelectric Energy-Harvesting Platform for Biomedical Sensors.
    Rozgic D, Markovic D.
    IEEE Trans Biomed Circuits Syst; 2017 Aug 12; 11(4):773-783. PubMed ID: 28541912
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A Compact and Efficient Boost Converter in a 28 nm CMOS with 90 mV Self-Startup and Maximum Output Voltage Tracking ZCS for Thermoelectric Energy Harvesting.
    Ali M, Chandrarathna SC, Moon SY, Jana MS, Shafique A, Qraiqea H, Lee JW.
    Sensors (Basel); 2023 Jul 07; 23(13):. PubMed ID: 37448092
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.