These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 38993506
21. Theoretical prediction of Janus PdXO (X = S, Se, Te) monolayers: structural, electronic, and transport properties. Vu TV, Phuc HV, Ahmad S, Hoi BD, Hieu NV, Al-Qaisi S, Kartamyshev AI, Hieu NN. RSC Adv; 2022 Apr 28; 12(21):12971-12977. PubMed ID: 35497018 [Abstract] [Full Text] [Related]
22. Spin-Orbit Coupling and Spin-Polarized Electronic Structures of Janus Vanadium-Dichalcogenide Monolayers: First-Principles Calculations. Lv MH, Li CM, Sun WF. Nanomaterials (Basel); 2022 Jan 24; 12(3):. PubMed ID: 35159727 [Abstract] [Full Text] [Related]
23. First-principles prediction of high carrier mobility for β-phase MX2N4 (M = Mo, W; X = Si, Ge) monolayers. Peng Y, Tian H, Yao M, Li X, Tang X, Jiao J, Zhu Q, Cao J. Sci Rep; 2024 Sep 29; 14(1):22548. PubMed ID: 39343781 [Abstract] [Full Text] [Related]
24. The thermoelectric properties of CdBr, CdI, and Janus Cd2BrI monolayers with low lattice thermal conductivity. Wu YL, Yang Q, Geng HY, Cheng Y. Phys Chem Chem Phys; 2024 Feb 22; 26(8):6956-6966. PubMed ID: 38334722 [Abstract] [Full Text] [Related]
25. Two-Dimensional Gold Sulfide Monolayers with Direct Band Gap and Ultrahigh Electron Mobility. Wu Q, Xu WW, Lin D, Wang J, Zeng XC. J Phys Chem Lett; 2019 Jul 05; 10(13):3773-3778. PubMed ID: 31244267 [Abstract] [Full Text] [Related]
26. Stability, electronic and mechanical properties of chalcogen (Se and Te) monolayers. Singh J, Jamdagni P, Jakhar M, Kumar A. Phys Chem Chem Phys; 2020 Mar 14; 22(10):5749-5755. PubMed ID: 32104878 [Abstract] [Full Text] [Related]
27. Novel Janus group III chalcogenide monolayers Al2XY2(X/Y = S, Se, Te): first-principles insight onto the structural, electronic, and transport properties. Vu TV, Hieu NN. J Phys Condens Matter; 2021 Dec 31; 34(11):. PubMed ID: 34915459 [Abstract] [Full Text] [Related]
28. Ultrathin Semiconducting Bi2Te2S and Bi2Te2Se with High Electron Mobilities. Wang B, Niu X, Ouyang Y, Zhou Q, Wang J. J Phys Chem Lett; 2018 Feb 01; 9(3):487-490. PubMed ID: 29323907 [Abstract] [Full Text] [Related]
29. Novel Braceletlike BiSbX3 (X = S, Se) Monolayers with an In-Plane Negative Poisson's Ratio and Anisotropic Photoelectric Properties. Guo H, Zhao Z, Wu L, Qiu J, Zhang F, Zhu B, Yu J, Chen X. J Phys Chem Lett; 2021 Nov 25; 12(46):11353-11360. PubMed ID: 34783548 [Abstract] [Full Text] [Related]
30. Theoretical investigations of novel Janus Pb2SSe monolayer as a potential multifunctional material for piezoelectric, photovoltaic, and thermoelectric applications. Zhang F, Qiu J, Guo H, Wu L, Zhu B, Zheng K, Li H, Wang Z, Chen X, Yu J. Nanoscale; 2021 Oct 01; 13(37):15611-15623. PubMed ID: 34596184 [Abstract] [Full Text] [Related]
31. Janus zirconium halide ZrXY (X, Y = Br, Cl and F) monolayers with high lattice thermal conductivity and strong visible-light absorption. Singh J, Singh G, Tripathi SK. Phys Chem Chem Phys; 2023 Feb 08; 25(6):4690-4700. PubMed ID: 36412485 [Abstract] [Full Text] [Related]
32. Janus GaOClX (X = F, Br, and I) monolayers as predicted using first-principles calculations: a novel class of nanodielectrics with superior energy storage properties. Jiang S, Zheng G. Phys Chem Chem Phys; 2023 Aug 09; 25(31):20854-20862. PubMed ID: 37522224 [Abstract] [Full Text] [Related]
33. Predicted Janus SnSSe monolayer: a comprehensive first-principles study. Guo SD, Guo XS, Han RY, Deng Y. Phys Chem Chem Phys; 2019 Nov 28; 21(44):24620-24628. PubMed ID: 31670329 [Abstract] [Full Text] [Related]
34. Two-dimensional Janus monolayers SPtAZ2 (A = Si and Ge; Z = N, P, and As): insight into their photocatalytic properties via first-principles calculations. Gao Z, He Y, Xiong K. Phys Chem Chem Phys; 2024 Aug 07; 26(31):21173-21185. PubMed ID: 39072651 [Abstract] [Full Text] [Related]
35. The coexistence of superior intrinsic piezoelectricity and thermoelectricity in two-dimensional Janus α-TeSSe. Chen S, Chen X, Zeng Z, Geng H, Yin H. Phys Chem Chem Phys; 2021 Dec 08; 23(47):26955-26966. PubMed ID: 34842246 [Abstract] [Full Text] [Related]
36. Structural, electronic, and transport properties of Janus GaInX2(X=S, Se, Te) monolayers: first-principles study. Vu TV, Linh TPT, Phuc HV, Duque CA, Kartamyshev AI, Hieu NN. J Phys Condens Matter; 2021 Nov 04; 34(4):. PubMed ID: 34670205 [Abstract] [Full Text] [Related]
37. Rashba-type spin splitting and transport properties of novel Janus XWGeN2 (X = O, S, Se, Te) monolayers. Vu TV, Phuc HV, Nguyen CV, Vi VTT, Kartamyshev AI, Hieu NN. Phys Chem Chem Phys; 2022 Jul 13; 24(27):16512-16521. PubMed ID: 35781308 [Abstract] [Full Text] [Related]
38. A first-principles prediction of novel Janus T'-RuXY (X/Y = S, Se, Te) monolayers: structural properties and electronic structures. Hien ND. RSC Adv; 2022 Aug 10; 12(35):22671-22677. PubMed ID: 36105970 [Abstract] [Full Text] [Related]
39. Excellent Hole Mobility and Out-of-Plane Piezoelectricity in X-Penta-Graphene (X = Si or Ge) with Poisson's Ratio Inversion. Liu S, Shang X, Liu X, Wang X, Liu F, Zhang J. Nanomaterials (Basel); 2024 Aug 17; 14(16):. PubMed ID: 39195396 [Abstract] [Full Text] [Related]
40. Janus MoAZ3H (A = Ge, Si; Z = N, P, As) monolayers: a new class of semiconductors exhibiting excellent photovoltaic and catalytic performances. Cai X, Chen G, Li R, Yu W, Yang X, Jia Y. Phys Chem Chem Phys; 2023 Nov 08; 25(43):29594-29602. PubMed ID: 37877368 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]