These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 38998680
1. Data-Driven and Machine Learning to Screen Metal-Organic Frameworks for the Efficient Separation of Methane. Guan Y, Huang X, Xu F, Wang W, Li H, Gong L, Zhao Y, Guo S, Liang H, Qiao Z. Nanomaterials (Basel); 2024 Jun 24; 14(13):. PubMed ID: 38998680 [Abstract] [Full Text] [Related]
2. Interpretable Machine-Learning and Big Data Mining to Predict Gas Diffusivity in Metal-Organic Frameworks. Guo S, Huang X, Situ Y, Huang Q, Guan K, Huang J, Wang W, Bai X, Liu Z, Wu Y, Qiao Z. Adv Sci (Weinh); 2023 Jul 24; 10(21):e2301461. PubMed ID: 37166040 [Abstract] [Full Text] [Related]
3. Combining Computational Screening and Machine Learning to Predict Metal-Organic Framework Adsorbents and Membranes for Removing CH4 or H2 from Air. Li H, Wang C, Zeng Y, Li D, Yan Y, Zhu X, Qiao Z. Membranes (Basel); 2022 Aug 25; 12(9):. PubMed ID: 36135849 [Abstract] [Full Text] [Related]
7. High-throughput computational screening of hypothetical metal-organic frameworks with open copper sites for CO2/H2 separation. Li M, Cai W, Wang C, Wu X. Phys Chem Chem Phys; 2022 Aug 10; 24(31):18764-18776. PubMed ID: 35903942 [Abstract] [Full Text] [Related]
8. Robust Nickel-Based Metal-Organic Framework for Highly Efficient Methane Purification and Capture. Tu S, Yu L, Lin D, Chen Y, Wu Y, Zhou X, Li Z, Xia Q. ACS Appl Mater Interfaces; 2022 Jan 26; 14(3):4242-4250. PubMed ID: 35014246 [Abstract] [Full Text] [Related]
9. High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations. Altintas C, Erucar I, Keskin S. ACS Appl Mater Interfaces; 2018 Jan 31; 10(4):3668-3679. PubMed ID: 29313343 [Abstract] [Full Text] [Related]
11. Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure-performance relations. Altintas C, Avci G, Daglar H, Gulcay E, Erucar I, Keskin S. J Mater Chem A Mater; 2018 Apr 14; 6(14):5836-5847. PubMed ID: 30009024 [Abstract] [Full Text] [Related]
12. Computational investigation of multifunctional MOFs for adsorption and membrane-based separation of CF4/CH4, CH4/H2, CH4/N2, and N2/H2 mixtures. Demir H, Keskin S. Mol Syst Des Eng; 2022 Nov 28; 7(12):1707-1721. PubMed ID: 36561661 [Abstract] [Full Text] [Related]
16. Large-Scale Screening and Design of Metal-Organic Frameworks for CH4 /N2 Separation. Yan T, Lan Y, Liu D, Yang Q, Zhong C. Chem Asian J; 2019 Oct 15; 14(20):3688-3693. PubMed ID: 31380607 [Abstract] [Full Text] [Related]
17. Unlocking the Effect of H2O on CO2 Separation Performance of Promising MOFs Using Atomically Detailed Simulations. Erucar I, Keskin S. Ind Eng Chem Res; 2020 Feb 19; 59(7):3141-3152. PubMed ID: 32201455 [Abstract] [Full Text] [Related]
18. Understanding CO2/CH4 Separation in Pristine and Defective 2D MOF CuBDC Nanosheets via Nonequilibrium Molecular Dynamics. Kallo MT, Lennox MJ. Langmuir; 2020 Nov 17; 36(45):13591-13600. PubMed ID: 33161715 [Abstract] [Full Text] [Related]
19. Role of Ionic Liquid [EMIM]+[SCN]- in the Adsorption and Diffusion of Gases in Metal-Organic Frameworks. Vicent-Luna JM, Gutiérrez-Sevillano JJ, Hamad S, Anta J, Calero S. ACS Appl Mater Interfaces; 2018 Sep 05; 10(35):29694-29704. PubMed ID: 30089205 [Abstract] [Full Text] [Related]