These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 39007690
1. Wetting State Transition of Laser Direct Writing Aluminum Surface Based on Coupling Effect of Micro/Nanoscale Characteristics. Wan Q, Hu X, Yu T, Guo P, Wang J, Shi H, Chen S. Langmuir; 2024 Jul 23; 40(29):15196-15204. PubMed ID: 39007690 [Abstract] [Full Text] [Related]
2. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Lin HP, Chen LJ. J Colloid Interface Sci; 2021 Dec 23; 603():539-549. PubMed ID: 34216950 [Abstract] [Full Text] [Related]
4. Understanding the petal effect: Wetting properties and surface structure of natural rose petals and rose petal-derived surfaces. Parra-Vicente S, Ibáñez-Ibáñez PF, Cabrerizo-Vílchez M, Sánchez-Almazo I, Rodríguez-Valverde MÁ, Ruiz-Cabello FJM. Colloids Surf B Biointerfaces; 2024 Apr 23; 236():113832. PubMed ID: 38447447 [Abstract] [Full Text] [Related]
5. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals. Chen S, Zhu M, Zhang Y, Dong S, Wang X. Langmuir; 2021 Feb 23; 37(7):2312-2321. PubMed ID: 33544610 [Abstract] [Full Text] [Related]
6. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Zhu L, Xiu Y, Xu J, Tamirisa PA, Hess DW, Wong CP. Langmuir; 2005 Nov 22; 21(24):11208-12. PubMed ID: 16285792 [Abstract] [Full Text] [Related]
10. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C, Ding G, Liu W, Deng Y, Hou W. Langmuir; 2008 Sep 16; 24(18):9952-5. PubMed ID: 18702472 [Abstract] [Full Text] [Related]
11. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain. Park JK, Yang Z, Kim S. ACS Appl Mater Interfaces; 2017 Sep 27; 9(38):33333-33340. PubMed ID: 28901732 [Abstract] [Full Text] [Related]
12. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M, Zheng Y, Zhai J, Jiang L. Acc Chem Res; 2010 Mar 16; 43(3):368-77. PubMed ID: 19954162 [Abstract] [Full Text] [Related]
16. Defect by design: Harnessing the "petal effect" for advanced hydrophobic surface applications. Mo M, Bai X, Liu Z, Huang Z, Xu M, Ma L, Lai W, Mo Q, Xie S, Li Y, Huang Y, Xiao N, Zheng Y. J Colloid Interface Sci; 2024 Nov 16; 673():37-48. PubMed ID: 38875796 [Abstract] [Full Text] [Related]
18. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K, Li Z, Maxey M, Chen S, Karniadakis GE. Langmuir; 2019 Feb 12; 35(6):2431-2442. PubMed ID: 30640480 [Abstract] [Full Text] [Related]
19. Superhydrophobic Surface Preparation and Wettability Transition of Titanium Alloy with Micro/Nano Hierarchical Texture. Yang Z, Zhu C, Zheng N, Le D, Zhou J. Materials (Basel); 2018 Nov 07; 11(11):. PubMed ID: 30405075 [Abstract] [Full Text] [Related]