These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 39024204
1. Theory on the rate equations of Michaelis-Menten type enzyme kinetics with competitive inhibition. Murugan R. PLoS One; 2024; 19(7):e0302679. PubMed ID: 39024204 [Abstract] [Full Text] [Related]
2. A steady-state approach for inhibition of heterogeneous enzyme reactions. Kari J, Schiano-di-Cola C, Hansen SF, Badino SF, Sørensen TH, Cavaleiro AM, Borch K, Westh P. Biochem J; 2020 May 29; 477(10):1971-1982. PubMed ID: 32391552 [Abstract] [Full Text] [Related]
3. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question. Schnell S. FEBS J; 2014 Jan 29; 281(2):464-72. PubMed ID: 24245583 [Abstract] [Full Text] [Related]
5. Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes. Brandt RB, Laux JE, Yates SW. Biochem Med Metab Biol; 1987 Jun 29; 37(3):344-9. PubMed ID: 3606895 [Abstract] [Full Text] [Related]
6. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant. Rami Tzafriri A, Edelman ER. J Theor Biol; 2007 Apr 21; 245(4):737-48. PubMed ID: 17234216 [Abstract] [Full Text] [Related]
8. The unreasonable effectiveness of the total quasi-steady state approximation, and its limitations. Eilertsen J, Schnell S, Walcher S. J Theor Biol; 2024 Apr 21; 583():111770. PubMed ID: 38423205 [Abstract] [Full Text] [Related]
9. The total quasi-steady-state approximation for fully competitive enzyme reactions. Pedersena MG, Bersani AM, Bersani E. Bull Math Biol; 2007 Jan 21; 69(1):433-57. PubMed ID: 16850351 [Abstract] [Full Text] [Related]
11. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na+/K+-ATPase. Monti JLE, Montes MR, Rossi RC. J Biol Chem; 2018 Jan 26; 293(4):1373-1385. PubMed ID: 29191836 [Abstract] [Full Text] [Related]
12. The kinetic effect of product instability in a Michaelis-Menten mechanism with competitive inhibition. Garrido-del Solo C, Moruno MA, Havsteen BH, Castellanos RV. Biosystems; 2000 Jan 26; 56(2-3):75-82. PubMed ID: 10880856 [Abstract] [Full Text] [Related]
14. Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics. Kang HW, KhudaBukhsh WR, Koeppl H, Rempała GA. Bull Math Biol; 2019 May 26; 81(5):1303-1336. PubMed ID: 30756234 [Abstract] [Full Text] [Related]
17. Michaelis-Menten equation for degradation of insoluble substrate. Andersen M, Kari J, Borch K, Westh P. Math Biosci; 2018 Feb 26; 296():93-97. PubMed ID: 29197509 [Abstract] [Full Text] [Related]
19. The quasi-steady-state approximations revisited: Timescales, small parameters, singularities, and normal forms in enzyme kinetics. Eilertsen J, Schnell S. Math Biosci; 2020 Jul 26; 325():108339. PubMed ID: 32184091 [Abstract] [Full Text] [Related]
20. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves. Moruno-Dávila MA, Garrido-del Solo C, García-Moreno M, Havsteen BH, Garcia-Sevilla F, Garcia-Cánovas F, Varón R. Int J Biochem Cell Biol; 2001 Feb 26; 33(2):181-91. PubMed ID: 11240375 [Abstract] [Full Text] [Related] Page: [Next] [New Search]