These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 39036861

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR).
    Baransi-Karkaby K, Hassanin M, Muhsein S, Massalha N, Sabbah I.
    Water Sci Technol; 2020 Mar; 81(6):1319-1328. PubMed ID: 32597417
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment.
    Xu H, Wang K, Zhang X, Gong H, Xia Y, Holmes DE.
    Bioresour Technol; 2020 Mar; 299():122598. PubMed ID: 31869628
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Hollow fiber membrane based H₂ diffusion for efficient in situ biogas upgrading in an anaerobic reactor.
    Luo G, Angelidaki I.
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3739-44. PubMed ID: 23494624
    [Abstract] [Full Text] [Related]

  • 12. A review on biogas upgrading in anaerobic digestion systems treating organic solids and wastewaters via biogas recirculation.
    Yuan T, Zhang Z, Lei Z, Shimizu K, Lee DJ.
    Bioresour Technol; 2022 Jan; 344(Pt B):126412. PubMed ID: 34838626
    [Abstract] [Full Text] [Related]

  • 13. H2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge.
    Alfaro N, Fdz-Polanco M, Fdz-Polanco F, Díaz I.
    Bioresour Technol; 2019 May; 280():1-8. PubMed ID: 30743054
    [Abstract] [Full Text] [Related]

  • 14. Production of high-calorific biogas from food waste by integrating two approaches: Autogenerative high-pressure and hydrogen injection.
    Kim S, Mostafa A, Im S, Lee MK, Kang S, Na JG, Kim DH.
    Water Res; 2021 Apr 15; 194():116920. PubMed ID: 33609909
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane.
    Mulat DG, Mosbæk F, Ward AJ, Polag D, Greule M, Keppler F, Nielsen JL, Feilberg A.
    Waste Manag; 2017 Oct 15; 68():146-156. PubMed ID: 28623019
    [Abstract] [Full Text] [Related]

  • 20. A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors.
    Musa MA, Idrus S, Harun MR, Tuan Mohd Marzuki TF, Abdul Wahab AM.
    Int J Environ Res Public Health; 2019 Dec 31; 17(1):. PubMed ID: 31906118
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.