These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 39041791

  • 21. Control over Charge Carrier Mobility in the Hole Transport Layer Enables Fast Colloidal Quantum Dot Infrared Photodetectors.
    Atan O, Pina JM, Parmar DH, Xia P, Zhang Y, Gulsaran A, Jung ED, Choi D, Imran M, Yavuz M, Hoogland S, Sargent EH.
    Nano Lett; 2023 May 24; 23(10):4298-4303. PubMed ID: 37166106
    [Abstract] [Full Text] [Related]

  • 22. Electron-Transport Layers Employing Strongly Bound Ligands Enhance Stability in Colloidal Quantum Dot Infrared Photodetectors.
    Zhang Y, Vafaie M, Xu J, Pina JM, Xia P, Najarian AM, Atan O, Imran M, Xie K, Hoogland S, Sargent EH.
    Adv Mater; 2022 Nov 24; 34(47):e2206884. PubMed ID: 36134538
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors.
    Sergeeva KA, Hu S, Sokolova AV, Portniagin AS, Chen D, Kershaw SV, Rogach AL.
    Adv Mater; 2024 Apr 24; 36(17):e2306518. PubMed ID: 37572367
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. A Colloidal-Quantum-Dot Infrared Photodiode with High Photoconductive Gain.
    Tang Y, Wu F, Chen F, Zhou Y, Wang P, Long M, Zhou W, Ning Z, He J, Gong F, Zhu Z, Qin S, Hu W.
    Small; 2018 Nov 24; 14(48):e1803158. PubMed ID: 30345615
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors.
    Xu K, Zhou W, Ning Z.
    Small; 2020 Nov 24; 16(47):e2003397. PubMed ID: 33140560
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Fast Near-Infrared Photodetection Using III-V Colloidal Quantum Dots.
    Sun B, Najarian AM, Sagar LK, Biondi M, Choi MJ, Li X, Levina L, Baek SW, Zheng C, Lee S, Kirmani AR, Sabatini R, Abed J, Liu M, Vafaie M, Li P, Richter LJ, Voznyy O, Chekini M, Lu ZH, García de Arquer FP, Sargent EH.
    Adv Mater; 2022 Aug 24; 34(33):e2203039. PubMed ID: 35767306
    [Abstract] [Full Text] [Related]

  • 36. On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing.
    Xu Q, Meng L, Zeng T, Sinha K, Dick C, Wang X.
    Opt Lett; 2019 Jan 15; 44(2):463-466. PubMed ID: 30644926
    [Abstract] [Full Text] [Related]

  • 37. Optical properties of HgTe colloidal quantum dots.
    Lhuillier E, Keuleyan S, Guyot-Sionnest P.
    Nanotechnology; 2012 May 04; 23(17):175705. PubMed ID: 22481378
    [Abstract] [Full Text] [Related]

  • 38. Halide-Driven Synthetic Control of InSb Colloidal Quantum Dots Enables Short-Wave Infrared Photodetectors.
    Muhammad, Choi D, Parmar DH, Rehl B, Zhang Y, Atan O, Kim G, Xia P, Pina JM, Li M, Liu Y, Voznyy O, Hoogland S, Sargent EH.
    Adv Mater; 2023 Nov 04; 35(46):e2306147. PubMed ID: 37734861
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.