These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 39041886

  • 1. Local differences in robustness to ocean acidification.
    Padilla DK, Milke L, Akin-Fajiye M, Rosa M, Redman D, Liguori A, Rugila A, Veilleux D, Dixon M, Charifson D, Meseck SL.
    Biol Open; 2024 Aug 15; 13(8):. PubMed ID: 39041886
    [Abstract] [Full Text] [Related]

  • 2. Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry.
    Rose JM, Blanchette CA, Chan F, Gouhier TC, Raimondi PT, Sanford E, Menge BA.
    PLoS One; 2020 Aug 15; 15(7):e0234075. PubMed ID: 32678823
    [Abstract] [Full Text] [Related]

  • 3. Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis).
    Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T.
    J Toxicol Environ Health A; 2011 Aug 15; 74(7-9):424-38. PubMed ID: 21391089
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis.
    Mangan S, Urbina MA, Findlay HS, Wilson RW, Lewis C.
    Proc Biol Sci; 2017 Oct 25; 284(1865):. PubMed ID: 29046378
    [Abstract] [Full Text] [Related]

  • 6. CO2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses.
    Zhao X, Han Y, Chen B, Xia B, Qu K, Liu G.
    Chemosphere; 2020 Mar 25; 243():125415. PubMed ID: 31770697
    [Abstract] [Full Text] [Related]

  • 7. Transgenerational responses to seawater pH in the edible oyster, with implications for the mariculture of the species under future ocean acidification.
    Lim YK, Dang X, Thiyagarajan V.
    Sci Total Environ; 2021 Aug 15; 782():146704. PubMed ID: 33848868
    [Abstract] [Full Text] [Related]

  • 8. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.
    Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller CA, Gimenez I, Hutchinson G.
    PLoS One; 2015 Aug 15; 10(6):e0128376. PubMed ID: 26061095
    [Abstract] [Full Text] [Related]

  • 9. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus.
    Kelly MW, Padilla-Gamiño JL, Hofmann GE.
    Glob Chang Biol; 2013 Aug 15; 19(8):2536-46. PubMed ID: 23661315
    [Abstract] [Full Text] [Related]

  • 10. Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses.
    Lewis C, Ellis RP, Vernon E, Elliot K, Newbatt S, Wilson RW.
    Sci Rep; 2016 Feb 22; 6():21554. PubMed ID: 26899803
    [Abstract] [Full Text] [Related]

  • 11. Ocean acidification reduces the crystallographic control in juvenile mussel shells.
    Fitzer SC, Cusack M, Phoenix VR, Kamenos NA.
    J Struct Biol; 2014 Oct 22; 188(1):39-45. PubMed ID: 25180664
    [Abstract] [Full Text] [Related]

  • 12. Naturally acidified habitat selects for ocean acidification-tolerant mussels.
    Thomsen J, Stapp LS, Haynert K, Schade H, Danelli M, Lannig G, Wegner KM, Melzner F.
    Sci Adv; 2017 Apr 22; 3(4):e1602411. PubMed ID: 28508039
    [Abstract] [Full Text] [Related]

  • 13. Ocean acidification increases copper toxicity to the early life history stages of the polychaete Arenicola marina in artificial seawater.
    Campbell AL, Mangan S, Ellis RP, Lewis C.
    Environ Sci Technol; 2014 Aug 19; 48(16):9745-53. PubMed ID: 25033036
    [Abstract] [Full Text] [Related]

  • 14. Acid-base physiology over tidal periods in the mussel Mytilus edulis: size and temperature are more influential than seawater pH.
    Mangan S, Wilson RW, Findlay HS, Lewis C.
    Proc Biol Sci; 2019 Feb 27; 286(1897):20182863. PubMed ID: 30963828
    [Abstract] [Full Text] [Related]

  • 15. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments.
    Thomsen J, Casties I, Pansch C, Körtzinger A, Melzner F.
    Glob Chang Biol; 2013 Apr 27; 19(4):1017-27. PubMed ID: 23504880
    [Abstract] [Full Text] [Related]

  • 16. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?
    Frieder CA, Gonzalez JP, Bockmon EE, Navarro MO, Levin LA.
    Glob Chang Biol; 2014 Mar 27; 20(3):754-64. PubMed ID: 24343909
    [Abstract] [Full Text] [Related]

  • 17. Intra-population variability of ocean acidification impacts on the physiology of Baltic blue mussels (Mytilus edulis): integrating tissue and organism response.
    Stapp LS, Thomsen J, Schade H, Bock C, Melzner F, Pörtner HO, Lannig G.
    J Comp Physiol B; 2017 May 27; 187(4):529-543. PubMed ID: 27921142
    [Abstract] [Full Text] [Related]

  • 18. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes.
    Carter HA, Ceballos-Osuna L, Miller NA, Stillman JH.
    J Exp Biol; 2013 Apr 15; 216(Pt 8):1412-22. PubMed ID: 23536589
    [Abstract] [Full Text] [Related]

  • 19. Biochemical adaptation to ocean acidification.
    Stillman JH, Paganini AW.
    J Exp Biol; 2015 Jun 15; 218(Pt 12):1946-55. PubMed ID: 26085671
    [Abstract] [Full Text] [Related]

  • 20. Effects of ocean acidification on dopamine-mediated behavioral responses of a coral reef damselfish.
    Hamilton TJ, Tresguerres M, Kwan GT, Szaskiewicz J, Franczak B, Cyronak T, Andersson AJ, Kline DI.
    Sci Total Environ; 2023 Jun 15; 877():162860. PubMed ID: 36931527
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.