These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 39042194
1. Groundwater salinity modeling and mapping using machine learning approaches: a case study in Sidi Okba region, Algeria. Boudibi S, Fadlaoui H, Hiouani F, Bouzidi N, Aissaoui A, Khomri ZE. Environ Sci Pollut Res Int; 2024 Aug; 31(36):48955-48971. PubMed ID: 39042194 [Abstract] [Full Text] [Related]
2. Inversion model of soil salinity in alfalfa covered farmland based on sensitive variable selection and machine learning algorithms. Ma H, Zhao W, Duan W, Ma F, Li C, Li Z. PeerJ; 2024 Aug; 12():e18186. PubMed ID: 39346075 [Abstract] [Full Text] [Related]
3. Susceptibility mapping of groundwater salinity using machine learning models. Mosavi A, Sajedi Hosseini F, Choubin B, Taromideh F, Ghodsi M, Nazari B, Dineva AA. Environ Sci Pollut Res Int; 2021 Mar; 28(9):10804-10817. PubMed ID: 33099737 [Abstract] [Full Text] [Related]
7. Computational assessment of groundwater salinity distribution within coastal multi-aquifers of Bangladesh. Jamei M, Karbasi M, Malik A, Abualigah L, Islam ARMT, Yaseen ZM. Sci Rep; 2022 Jul 01; 12(1):11165. PubMed ID: 35778436 [Abstract] [Full Text] [Related]
10. Groundwater salinity in the Horn of Africa: Spatial prediction modeling and estimated people at risk. Araya D, Podgorski J, Berg M. Environ Int; 2023 Jun 01; 176():107925. PubMed ID: 37209488 [Abstract] [Full Text] [Related]
13. Solving water scarcity challenges in arid regions: A novel approach employing human-based meta-heuristics and machine learning algorithm for groundwater potential mapping. Razavi-Termeh SV, Sadeghi-Niaraki A, Farhangi F, Khiadani M, Pirasteh S, Choi SM. Chemosphere; 2024 Sep 01; 363():142859. PubMed ID: 39025307 [Abstract] [Full Text] [Related]
14. Integrating proximal soil sensing data and environmental variables to enhance the prediction accuracy for soil salinity and sodicity in a region of Xinjiang Province, China. Zhao S, Ayoubi S, Mousavi SR, Mireei SA, Shahpouri F, Wu SX, Chen CB, Zhao ZY, Tian CY. J Environ Manage; 2024 Jul 01; 364():121311. PubMed ID: 38875977 [Abstract] [Full Text] [Related]
16. Towards the Improvement of Soil Salinity Mapping in a Data-Scarce Context Using Sentinel-2 Images in Machine-Learning Models. Sirpa-Poma JW, Satgé F, Resongles E, Pillco-Zolá R, Molina-Carpio J, Flores Colque MG, Ormachea M, Pacheco Mollinedo P, Bonnet MP. Sensors (Basel); 2023 Nov 22; 23(23):. PubMed ID: 38067701 [Abstract] [Full Text] [Related]
17. Integrating machine learning models with cross-validation and bootstrapping for evaluating groundwater quality in Kanchanaburi province, Thailand. Thanh NN, Chotpantarat S, Ngu NH, Thunyawatcharakul P, Kaewdum N. Environ Res; 2024 Jul 01; 252(Pt 2):118952. PubMed ID: 38636644 [Abstract] [Full Text] [Related]
18. Mapping of groundwater salinization and modelling using meta-heuristic algorithms for the coastal aquifer of eastern Saudi Arabia. Abba SI, Benaafi M, Usman AG, Ozsahin DU, Tawabini B, Aljundi IH. Sci Total Environ; 2023 Feb 01; 858(Pt 2):159697. PubMed ID: 36334664 [Abstract] [Full Text] [Related]