These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 39042194
21. Accuracy and uncertainty of geostatistical models versus machine learning for digital mapping of soil calcium and potassium. Sharififar A. Environ Monit Assess; 2022 Sep 10; 194(10):760. PubMed ID: 36087165 [Abstract] [Full Text] [Related]
22. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data. Samani S, Vadiati M, Nejatijahromi Z, Etebari B, Kisi O. Environ Sci Pollut Res Int; 2023 Feb 10; 30(9):22863-22884. PubMed ID: 36308648 [Abstract] [Full Text] [Related]
23. Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method. Nasiri Khiavi A, Mostafazadeh R, Adhami M. Environ Sci Pollut Res Int; 2023 Nov 10; 30(54):115758-115775. PubMed ID: 37889408 [Abstract] [Full Text] [Related]
24. Improving groundwater nitrate concentration prediction using local ensemble of machine learning models. Mahboobi H, Shakiba A, Mirbagheri B. J Environ Manage; 2023 Nov 01; 345():118782. PubMed ID: 37597371 [Abstract] [Full Text] [Related]
26. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration. Band SS, Janizadeh S, Pal SC, Chowdhuri I, Siabi Z, Norouzi A, Melesse AM, Shokri M, Mosavi A. Sensors (Basel); 2020 Oct 12; 20(20):. PubMed ID: 33053663 [Abstract] [Full Text] [Related]
27. Prediction of phosphorus concentrations in shallow groundwater in intensive agricultural regions based on machine learning. Yang H, Wang P, Chen A, Ye Y, Chen Q, Cui R, Zhang D. Chemosphere; 2023 Feb 12; 313():137623. PubMed ID: 36565764 [Abstract] [Full Text] [Related]
28. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage. Tang J, Wang X, Wan H, Lin C, Shao Z, Chang Y, Wang H, Wu Y, Zhang T, Du Y. BMC Med Inform Decis Mak; 2022 Oct 25; 22(1):278. PubMed ID: 36284327 [Abstract] [Full Text] [Related]
29. Susceptibility Assessment of Groundwater Nitrate Contamination Using an Ensemble Machine Learning Approach. Hosseini FS, Choubin B, Bagheri-Gavkosh M, Karimi O, Taromideh F, Mako C. Ground Water; 2023 Oct 25; 61(4):510-516. PubMed ID: 36127852 [Abstract] [Full Text] [Related]
30. Groundwater Salinity Across India: Predicting Occurrences and Controls by Field-Observations and Machine Learning Modeling. Sarkar S, Das K, Mukherjee A. Environ Sci Technol; 2024 Feb 27; 58(8):3953-3965. PubMed ID: 38359304 [Abstract] [Full Text] [Related]
32. Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Rostaminia M, Rahmani A, Mousavi SR, Taghizadeh-Mehrjardi R, Maghsodi Z. Environ Monit Assess; 2021 Nov 17; 193(12):815. PubMed ID: 34787728 [Abstract] [Full Text] [Related]
34. The potential evaluation of groundwater by integrating rank sum ratio (RSR) and machine learning algorithms in the Qaidam Basin. Wang Z, Wang J, Yu D, Chen K. Environ Sci Pollut Res Int; 2023 May 17; 30(23):63991-64005. PubMed ID: 37059956 [Abstract] [Full Text] [Related]
38. Machine learning approach to single nucleotide polymorphism-based asthma prediction. Gaudillo J, Rodriguez JJR, Nazareno A, Baltazar LR, Vilela J, Bulalacao R, Domingo M, Albia J. PLoS One; 2019 May 17; 14(12):e0225574. PubMed ID: 31800601 [Abstract] [Full Text] [Related]
39. Groundwater level forecasting with machine learning models: A review. Boo KBW, El-Shafie A, Othman F, Khan MMH, Birima AH, Ahmed AN. Water Res; 2024 Mar 15; 252():121249. PubMed ID: 38330715 [Abstract] [Full Text] [Related]
40. Earth fissure hazard prediction using machine learning models. Choubin B, Mosavi A, Alamdarloo EH, Hosseini FS, Shamshirband S, Dashtekian K, Ghamisi P. Environ Res; 2019 Dec 15; 179(Pt A):108770. PubMed ID: 31577962 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]