These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 39068252
1. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Sci Rep; 2024 Jul 27; 14(1):17303. PubMed ID: 39068252 [Abstract] [Full Text] [Related]
2. Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose. Aguirre Ocampo R, Echeverry-Rendón M, DeAlba-Montero I, Robledo S, Ruiz F, Echeverría Echeverría F. J Biomed Mater Res A; 2021 Jan 27; 109(1):104-121. PubMed ID: 32441468 [Abstract] [Full Text] [Related]
3. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity. Maher S, Linklater D, Rastin H, Le Yap P, Ivanova EP, Losic D. ChemMedChem; 2022 Jan 19; 17(2):e202100580. PubMed ID: 34606176 [Abstract] [Full Text] [Related]
4. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Lin WT, Tan HL, Duan ZL, Yue B, Ma R, He G, Tang TT. Int J Nanomedicine; 2014 Jan 19; 9():1215-30. PubMed ID: 24634583 [Abstract] [Full Text] [Related]
5. Diameter of titanium nanotubes influences anti-bacterial efficacy. Ercan B, Taylor E, Alpaslan E, Webster TJ. Nanotechnology; 2011 Jul 22; 22(29):295102. PubMed ID: 21673387 [Abstract] [Full Text] [Related]
6. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y, Zhang Y, Alvarez MM, Gao B, Huo K, Xu J, Xu N, Zhang C, Fu J, Khademhosseini A, Li F. Acta Biomater; 2016 Feb 22; 31():388-400. PubMed ID: 26612413 [Abstract] [Full Text] [Related]
7. Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings. Liu X, Tian A, You J, Zhang H, Wu L, Bai X, Lei Z, Shi X, Xue X, Wang H. Int J Nanomedicine; 2016 Feb 22; 11():5743-5755. PubMed ID: 27843315 [Abstract] [Full Text] [Related]
8. Antibacterial Activity in Iodine-coated Implants Under Conditions of Iodine Loss: Study in a Rat Model Plus In Vitro Analysis. Ueoka K, Kabata T, Tokoro M, Kajino Y, Inoue D, Takagi T, Ohmori T, Yoshitani J, Ueno T, Yamamuro Y, Taninaka A, Tsuchiya H. Clin Orthop Relat Res; 2021 Jul 01; 479(7):1613-1623. PubMed ID: 33847603 [Abstract] [Full Text] [Related]
9. TiO2 nanotubes as an antibacterial nanotextured surface for dental implants: Systematic review and meta-analysis. Kunrath MF, Farina G, Sturmer LBS, Teixeira ER. Dent Mater; 2024 Jun 01; 40(6):907-920. PubMed ID: 38714394 [Abstract] [Full Text] [Related]
10. Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers. Sabino RM, Kauk K, Madruga LYC, Kipper MJ, Martins AF, Popat KC. J Biomed Mater Res A; 2020 Apr 01; 108(4):992-1005. PubMed ID: 31909867 [Abstract] [Full Text] [Related]
11. Enhancing antibacterial properties of titanium implants through a novel Ag-TiO2-OTS nanocomposite coating: a comprehensive study on resist-killing-disintegrate approach. Jiang Y, Wan Z, Liu Q, Li X, Jiang B, Guo M, Fan P, Du S, Xu D, Liu C. J Biomater Sci Polym Ed; 2024 Aug 01; 35(11):1609-1630. PubMed ID: 38652755 [Abstract] [Full Text] [Related]
12. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering. Uhm SH, Song DH, Kwon JS, Lee SB, Han JG, Kim KN. J Biomed Mater Res B Appl Biomater; 2014 Apr 01; 102(3):592-603. PubMed ID: 24123999 [Abstract] [Full Text] [Related]
13. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D. Colloids Surf B Biointerfaces; 2015 Jun 01; 130():255-63. PubMed ID: 25944564 [Abstract] [Full Text] [Related]
14. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Mei S, Wang H, Wang W, Tong L, Pan H, Ruan C, Ma Q, Liu M, Yang H, Zhang L, Cheng Y, Zhang Y, Zhao L, Chu PK. Biomaterials; 2014 May 01; 35(14):4255-65. PubMed ID: 24565524 [Abstract] [Full Text] [Related]
15. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. Yuan Z, Liu P, Hao Y, Ding Y, Cai K. Colloids Surf B Biointerfaces; 2018 Nov 01; 171():597-605. PubMed ID: 30099296 [Abstract] [Full Text] [Related]
16. Surface characterization and antibacterial efficiency of well-ordered TiO2 nanotube surfaces fabricated on titanium foams. Durdu S, Sivlin D, Ozcan K, Kalkan S, Keles O, Usta M. Sci Rep; 2024 Jan 05; 14(1):618. PubMed ID: 38182771 [Abstract] [Full Text] [Related]
17. Cytocompatibility, antibacterial, and corrosion properties of chitosan/polymethacrylates and chitosan/poly(4-vinylpyridine) smart coatings, electrophoretically deposited on nanosilver-decorated titania nanotubes. Pawłowski Ł, Bartmański M, Ronowska A, Banach-Kopeć A, Mania S, Cieślik BM, Mielewczyk-Gryń A, Karczewski J, Zieliński A. J Biomed Mater Res B Appl Biomater; 2024 Jan 05; 112(1):e35332. PubMed ID: 37728122 [Abstract] [Full Text] [Related]
18. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method. Li B, Hao J, Min Y, Xin S, Guo L, He F, Liang C, Wang H, Li H. Mater Sci Eng C Mater Biol Appl; 2015 Jun 05; 51():80-6. PubMed ID: 25842111 [Abstract] [Full Text] [Related]
19. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Rajyalakshmi A, Ercan B, Balasubramanian K, Webster TJ. Int J Nanomedicine; 2011 Jun 05; 6():1765-71. PubMed ID: 21980239 [Abstract] [Full Text] [Related]
20. Molybdenum Disulfide Surfaces to Reduce Staphylococcus aureus and Pseudomonas aeruginosa Biofilm Formation. Amin M, Rowley-Neale S, Shalamanova L, Lynch S, Wilson-Nieuwenhuis JT, El Mohtadi M, Banks CE, Whitehead KA. ACS Appl Mater Interfaces; 2020 May 06; 12(18):21057-21069. PubMed ID: 32289218 [Abstract] [Full Text] [Related] Page: [Next] [New Search]