These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 39073571
21. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Zhou X, Shi G, Fan B, Cheng X, Zhang X, Wang X, Liu S, Hao Y, Wei Z, Wang L, Feng S. Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249 [Abstract] [Full Text] [Related]
22. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Liang P, Jin LH, Liang T, Liu EZ, Zhao SG. Chin Med J (Engl); 2006 Aug 20; 119(16):1331-8. PubMed ID: 16934177 [Abstract] [Full Text] [Related]
23. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Amemori T, Ruzicka J, Romanyuk N, Jhanwar-Uniyal M, Sykova E, Jendelova P. Stem Cell Res Ther; 2015 Dec 22; 6():257. PubMed ID: 26696415 [Abstract] [Full Text] [Related]
24. Human conditionally immortalized neural stem cells improve locomotor function after spinal cord injury in the rat. Amemori T, Romanyuk N, Jendelova P, Herynek V, Turnovcova K, Prochazka P, Kapcalova M, Cocks G, Price J, Sykova E. Stem Cell Res Ther; 2013 Jun 07; 4(3):68. PubMed ID: 23759119 [Abstract] [Full Text] [Related]
30. Applications of induced pluripotent stem cell technologies in spinal cord injury. Nagoshi N, Okano H. J Neurochem; 2017 Jun 07; 141(6):848-860. PubMed ID: 28199003 [Abstract] [Full Text] [Related]
31. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing. Nagoshi N, Khazaei M, Ahlfors JE, Ahuja CS, Nori S, Wang J, Shibata S, Fehlings MG. Stem Cells Transl Med; 2018 Nov 07; 7(11):806-818. PubMed ID: 30085415 [Abstract] [Full Text] [Related]
32. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury. All AH, Bazley FA, Gupta S, Pashai N, Hu C, Pourmorteza A, Kerr C. PLoS One; 2012 Nov 07; 7(10):e47645. PubMed ID: 23091637 [Abstract] [Full Text] [Related]
33. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, Hashimoto S, Kitagawa T, Ago K, Kajikawa K, Shibata R, Kamata Y, Ushiba J, Koga K, Furue H, Matsumoto M, Nakamura M, Nagoshi N, Okano H. Cell Rep; 2021 Nov 23; 37(8):110019. PubMed ID: 34818559 [Abstract] [Full Text] [Related]
34. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells. Zhao J, Sun W, Cho HM, Ouyang H, Li W, Lin Y, Do J, Zhang L, Ding S, Liu Y, Lu P, Zhang K. J Biol Chem; 2013 Jan 04; 288(1):164-8. PubMed ID: 23155053 [Abstract] [Full Text] [Related]
37. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury. Stewart AN, Matyas JJ, Welchko RM, Goldsmith AD, Zeiler SE, Hochgeschwender U, Lu M, Nan Z, Rossignol J, Dunbar GL. Restor Neurol Neurosci; 2017 Jan 04; 35(4):395-411. PubMed ID: 28598857 [Abstract] [Full Text] [Related]
40. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Nutt SE, Chang EA, Suhr ST, Schlosser LO, Mondello SE, Moritz CT, Cibelli JB, Horner PJ. Exp Neurol; 2013 Oct 04; 248():491-503. PubMed ID: 23891888 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]