These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 39074694

  • 21. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds.
    Gendviliene I, Simoliunas E, Alksne M, Dibart S, Jasiuniene E, Cicenas V, Jacobs R, Bukelskiene V, Rutkunas V.
    Eur Cell Mater; 2021 Feb 23; 41():204-215. PubMed ID: 33641140
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH, Chuang TY, Chiang WH, Chen IP, Wang K, Shie MY, Chen YW.
    Mater Sci Eng C Mater Biol Appl; 2019 Nov 23; 104():109887. PubMed ID: 31500024
    [Abstract] [Full Text] [Related]

  • 25. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration.
    Yang C, Ma H, Wang Z, Younis MR, Liu C, Wu C, Luo Y, Huang P.
    Adv Sci (Weinh); 2021 Oct 23; 8(20):e2100894. PubMed ID: 34396718
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting.
    Chen YW, Shen YF, Ho CC, Yu J, Wu YA, Wang K, Shih CT, Shie MY.
    Mater Sci Eng C Mater Biol Appl; 2018 Oct 01; 91():679-687. PubMed ID: 30033302
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair.
    Chi H, Chen G, He Y, Chen G, Tu H, Liu X, Yan J, Wang X.
    Int J Nanomedicine; 2020 Oct 01; 15():5825-5838. PubMed ID: 32821104
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T, Peng M, Yang Z, Zhou X, Deng Y, Jiang C, Xiao M, Wang J.
    Acta Biomater; 2018 Apr 15; 71():96-107. PubMed ID: 29549051
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z, Hui A, Zhao H, Ye X, Zhang C, Wang A, Zhang C.
    Int J Nanomedicine; 2020 Apr 15; 15():6945-6960. PubMed ID: 33061361
    [Abstract] [Full Text] [Related]

  • 34. Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration.
    Zhang Y, Fang M, Zhu J, Li T, Li N, Su B, Sun GD, Li L, Zhou C.
    Int J Biol Macromol; 2024 Aug 15; 274(Pt 1):132970. PubMed ID: 38876239
    [Abstract] [Full Text] [Related]

  • 35. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation.
    Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, Zhang Y, Xiao J.
    Theranostics; 2020 Aug 15; 10(2):725-740. PubMed ID: 31903147
    [Abstract] [Full Text] [Related]

  • 36. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering.
    Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS.
    J Mater Chem B; 2024 Jul 17; 12(28):6886-6904. PubMed ID: 38912967
    [Abstract] [Full Text] [Related]

  • 37. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds.
    Chiu YC, Shie MY, Lin YH, Lee AK, Chen YW.
    Int J Mol Sci; 2019 Jun 03; 20(11):. PubMed ID: 31163656
    [Abstract] [Full Text] [Related]

  • 38. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes.
    Song Y, Wu H, Gao Y, Li J, Lin K, Liu B, Lei X, Cheng P, Zhang S, Wang Y, Sun J, Bi L, Pei G.
    ACS Appl Mater Interfaces; 2020 Apr 08; 12(14):16058-16075. PubMed ID: 32182418
    [Abstract] [Full Text] [Related]

  • 39. Developing a novel calcium magnesium silicate/graphene oxide incorporated silk fibroin porous scaffold with enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis.
    Wu T, Li B, Huang W, Zeng X, Shi Y, Lin Z, Lin C, Xu W, Xia H, Zhang T.
    Biomed Mater; 2022 May 03; 17(3):. PubMed ID: 35395653
    [Abstract] [Full Text] [Related]

  • 40. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds.
    Janmohammadi M, Doostmohammadi N, Bahraminasab M, Nourbakhsh MS, Arab S, Asgharzade S, Ghanbari A, Satari A.
    Int J Biol Macromol; 2024 Jun 03; 270(Pt 1):132361. PubMed ID: 38750857
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.