These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR, Cao CL, Du TT, Wang JL, Li J, Li WX, Chen M. J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [Abstract] [Full Text] [Related]
5. Novel deep learning radiomics nomogram-based multiparametric MRI for predicting the lymph node metastasis in rectal cancer: A dual-center study. Yang Y, Xu Z, Cai Z, Zhao H, Zhu C, Hong J, Lu R, Lai X, Guo L, Hu Q, Xu Z. J Cancer Res Clin Oncol; 2024 Oct 09; 150(10):450. PubMed ID: 39379733 [Abstract] [Full Text] [Related]
6. Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images. Jin X, Ai Y, Zhang J, Zhu H, Jin J, Teng Y, Chen B, Xie C. Eur Radiol; 2020 Jul 09; 30(7):4117-4124. PubMed ID: 32078013 [Abstract] [Full Text] [Related]
7. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography. Wang Q, Lin Y, Ding C, Guan W, Zhang X, Jia J, Zhou W, Liu Z, Bai G. Eur Radiol; 2024 Sep 09; 34(9):6121-6131. PubMed ID: 38337068 [Abstract] [Full Text] [Related]
8. Prediction of axillary lymph node metastasis using a magnetic resonance imaging radiomics model of invasive breast cancer primary tumor. Shi W, Su Y, Zhang R, Xia W, Lian Z, Mao N, Wang Y, Zhang A, Gao X, Zhang Y. Cancer Imaging; 2024 Sep 13; 24(1):122. PubMed ID: 39272199 [Abstract] [Full Text] [Related]
9. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y, Yang CM, Su S, Wang WJ, Fan LP, Shu J. BMC Cancer; 2021 Nov 24; 21(1):1268. PubMed ID: 34819043 [Abstract] [Full Text] [Related]
10. MRI-based Radiomics Model for Preoperative Prediction of Lateral Pelvic Lymph Node Metastasis in Locally Advanced Rectal Cancer. Zhao W, Xu H, Zhao R, Zhou S, Mei S, Wang Z, Zhao F, Xiao T, Huang F, Qiu W, Tang J, Liu Q. Acad Radiol; 2024 Jul 24; 31(7):2753-2772. PubMed ID: 37643928 [Abstract] [Full Text] [Related]
11. Prediction of pelvic lymph node metastasis in prostate cancer using radiomics based on T2-weighted imaging. Liu X, Zhang Y, Sun Z, Wang X, Zhang X, Wang X. Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug 28; 47(8):1025-1036. PubMed ID: 36097770 [Abstract] [Full Text] [Related]
12. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years. Qian L, Liu X, Zhou S, Zhi W, Zhang K, Li H, Li J, Chang C. Front Endocrinol (Lausanne); 2024 Aug 28; 15():1323452. PubMed ID: 39072273 [Abstract] [Full Text] [Related]
14. Radiologists with MRI-based radiomics aids to predict the pelvic lymph node metastasis in endometrial cancer: a multicenter study. Yan BC, Li Y, Ma FH, Zhang GF, Feng F, Sun MH, Lin GW, Qiang JW. Eur Radiol; 2021 Jan 28; 31(1):411-422. PubMed ID: 32749583 [Abstract] [Full Text] [Related]
15. Noninvasive prediction of lymph node metastasis in pancreatic cancer using an ultrasound-based clinicoradiomics machine learning model. Wen DY, Chen JM, Tang ZP, Pang JS, Qin Q, Zhang L, He Y, Yang H. Biomed Eng Online; 2024 Jun 18; 23(1):56. PubMed ID: 38890695 [Abstract] [Full Text] [Related]
16. T2WI-based texture analysis predicts preoperative lymph node metastasis of rectal cancer. Zhuang Z, Zhang Y, Yang X, Deng X, Wang Z. Abdom Radiol (NY); 2024 Jun 18; 49(6):2008-2016. PubMed ID: 38411692 [Abstract] [Full Text] [Related]
17. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J, Wu X, Mao N, Zheng G, Zhang H, Mou Y, Jia C, Mi J, Song X. Front Endocrinol (Lausanne); 2021 Jun 18; 12():741698. PubMed ID: 34745008 [Abstract] [Full Text] [Related]
19. 2-[18F]FDG PET-based quantification of lymph node metabolic heterogeneity for predicting lymph node metastasis in patients with colorectal cancer. Xu L, Huang G, Wang Y, Huang G, Liu J, Chen R. Eur J Nucl Med Mol Imaging; 2024 May 18; 51(6):1729-1740. PubMed ID: 38150017 [Abstract] [Full Text] [Related]