These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 39101434

  • 21. Large-scale evidence for microbial response and associated carbon release after permafrost thaw.
    Chen Y, Liu F, Kang L, Zhang D, Kou D, Mao C, Qin S, Zhang Q, Yang Y.
    Glob Chang Biol; 2021 Jul; 27(14):3218-3229. PubMed ID: 33336478
    [Abstract] [Full Text] [Related]

  • 22. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.
    Taş N, Prestat E, McFarland JW, Wickland KP, Knight R, Berhe AA, Jorgenson T, Waldrop MP, Jansson JK.
    ISME J; 2014 Sep; 8(9):1904-19. PubMed ID: 24722629
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community.
    Feng J, Wang C, Lei J, Yang Y, Yan Q, Zhou X, Tao X, Ning D, Yuan MM, Qin Y, Shi ZJ, Guo X, He Z, Van Nostrand JD, Wu L, Bracho-Garillo RG, Penton CR, Cole JR, Konstantinidis KT, Luo Y, Schuur EAG, Tiedje JM, Zhou J.
    Microbiome; 2020 Jan 17; 8(1):3. PubMed ID: 31952472
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients.
    Waldrop MP, Chabot CL, Liebner S, Holm S, Snyder MW, Dillon M, Dudgeon SR, Douglas TA, Leewis MC, Walter Anthony KM, McFarland JW, Arp CD, Bondurant AC, Taş N, Mackelprang R.
    ISME J; 2023 Aug 17; 17(8):1224-1235. PubMed ID: 37217592
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Discovery of a novel methanogen prevalent in thawing permafrost.
    Mondav R, Woodcroft BJ, Kim EH, McCalley CK, Hodgkins SB, Crill PM, Chanton J, Hurst GB, VerBerkmoes NC, Saleska SR, Hugenholtz P, Rich VI, Tyson GW.
    Nat Commun; 2014 Aug 17; 5():3212. PubMed ID: 24526077
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils.
    Bi L, Yu DT, Du S, Zhang LM, Zhang LY, Wu CF, Xiong C, Han LL, He JZ.
    Environ Microbiol; 2021 Feb 17; 23(2):588-599. PubMed ID: 32249528
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Tundra Soil Viruses Mediate Responses of Microbial Communities to Climate Warming.
    Ji M, Fan X, Cornell CR, Zhang Y, Yuan MM, Tian Z, Sun K, Gao R, Liu Y, Zhou J.
    mBio; 2023 Apr 25; 14(2):e0300922. PubMed ID: 36786571
    [Abstract] [Full Text] [Related]

  • 33. Abrupt permafrost thaw triggers activity of copiotrophs and microbiome predators.
    Scheel M, Zervas A, Rijkers R, Tveit AT, Ekelund F, Campuzano Jiménez F, Christensen TR, Jacobsen CS.
    FEMS Microbiol Ecol; 2023 Oct 17; 99(11):. PubMed ID: 37796894
    [Abstract] [Full Text] [Related]

  • 34. Disproportionate microbial responses to decadal drainage on a Siberian floodplain.
    Kwon MJ, Tripathi BM, Göckede M, Shin SC, Myeong NR, Lee YK, Kim M.
    Glob Chang Biol; 2021 Oct 17; 27(20):5124-5140. PubMed ID: 34216067
    [Abstract] [Full Text] [Related]

  • 35. Unraveling the habitat preferences, ecological drivers, potential hosts, and auxiliary metabolism of soil giant viruses across China.
    Liang JL, Feng SW, Jia P, Lu JL, Yi X, Gao SM, Wu ZH, Liao B, Shu WS, Li JT.
    Microbiome; 2024 Jul 22; 12(1):136. PubMed ID: 39039586
    [Abstract] [Full Text] [Related]

  • 36. Climate warming has direct and indirect effects on microbes associated with carbon cycling in northern lakes.
    Winder JC, Braga LPP, Kuhn MA, Thompson LM, Olefeldt D, Tanentzap AJ.
    Glob Chang Biol; 2023 Jun 22; 29(11):3039-3053. PubMed ID: 36843502
    [Abstract] [Full Text] [Related]

  • 37. DNA Viral Diversity, Abundance, and Functional Potential Vary across Grassland Soils with a Range of Historical Moisture Regimes.
    Wu R, Davison MR, Nelson WC, Graham EB, Fansler SJ, Farris Y, Bell SL, Godinez I, Mcdermott JE, Hofmockel KS, Jansson JK.
    mBio; 2021 Dec 21; 12(6):e0259521. PubMed ID: 34724822
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches.
    Ali A, Vishnivetskaya TA, Chauhan A.
    Braz J Microbiol; 2024 Sep 21; 55(3):2437-2452. PubMed ID: 38758507
    [Abstract] [Full Text] [Related]

  • 40. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov.
    Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI, IsoGenie Project Coordinators, Saleska SR, Tyson GW, Rich VI.
    Syst Appl Microbiol; 2019 Jan 21; 42(1):54-66. PubMed ID: 30616913
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.