These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 39102378

  • 1. Dissipation kinetics and risk assessment of residues of combination product of two fungicides, fluxapyroxad, and pyraclostrobin in cumin.
    Parmar KD, Chaudhary NN, Kalasariya RL, Chawla S, Thakor SC, Patel CJ, Patel DS, Akbari LF, Kumawat GL.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2024 Oct; 41(10):1288-1301. PubMed ID: 39102378
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Residues, dissipation kinetics, and dietary intake risk assessment of two fungicides in grape and soil.
    Wang S, Zhang Q, Yu Y, Chen Y, Zeng S, Lu P, Hu D.
    Regul Toxicol Pharmacol; 2018 Dec; 100():72-79. PubMed ID: 30359702
    [Abstract] [Full Text] [Related]

  • 5. Dissipation, persistence, and risk assessment of fluxapyroxad and penthiopyrad residues in perilla leaf (Perilla frutescens var. japonica Hara).
    Noh HH, Lee JY, Park HK, Lee JW, Jo SH, Lim JB, Shin HG, Kwon H, Kyung KS.
    PLoS One; 2019 Dec; 14(4):e0212209. PubMed ID: 30964876
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Residue behaviours, dissipation kinetics and dietary risk assessment of pyaclostrobin, cyazofamid and its metabolite in grape.
    Pang N, Dou X, Hu J.
    J Sci Food Agric; 2019 Nov; 99(14):6167-6172. PubMed ID: 31226227
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China.
    Zhao Z, Sun R, Su Y, Hu J, Liu X.
    Ecotoxicol Environ Saf; 2021 Jan 01; 207():111236. PubMed ID: 32911182
    [Abstract] [Full Text] [Related]

  • 12. Dissipation and Dietary Risk Assessment of the Fungicide Pyraclostrobin in Apples Using Ultra-High Performance Liquid Chromatography-Mass Spectrometry.
    Wang B, Shi L, Ren P, Qin S, Li J, Cao J.
    Molecules; 2024 Sep 18; 29(18):. PubMed ID: 39339428
    [Abstract] [Full Text] [Related]

  • 13. Dissipation of pyraclostrobin and its metabolite BF-500-3 in maize under field conditions.
    You X, Liu C, Liu F, Liu Y, Dong J.
    Ecotoxicol Environ Saf; 2012 Jun 18; 80():252-7. PubMed ID: 22520453
    [Abstract] [Full Text] [Related]

  • 14. Magnitude of picoxystrobin residues in strawberry under Egyptian conditions: dissipation pattern and consumer risk assessment.
    Malhat F, Saber ES, Amin AS, Anagnostopoulos C, Abdelsalam Shokr S.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jun 18; 37(6):973-982. PubMed ID: 32186993
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Residue analysis and kinetics modeling of thiophanate-methyl, carbendazim, tebuconazole and pyraclostrobin in apple tree bark using QuEChERS/HPLC-VWD.
    Li P, Sun P, Dong X, Li B.
    Biomed Chromatogr; 2020 Sep 18; 34(9):e4851. PubMed ID: 32307729
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.