These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 39116889

  • 1. Highly conductive, stretchable, and biocompatible graphene oxide biocomposite hydrogel for advanced tissue engineering.
    Lee YJ, Ajiteru O, Lee JS, Lee OJ, Choi KY, Kim SH, Park CH.
    Biofabrication; 2024 Aug 28; 16(4):. PubMed ID: 39116889
    [Abstract] [Full Text] [Related]

  • 2. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H.
    ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):4343-4357. PubMed ID: 31909967
    [Abstract] [Full Text] [Related]

  • 3. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells.
    Olate-Moya F, Rubí-Sans G, Engel E, Mateos-Timoneda MÁ, Palza H.
    Biomacromolecules; 2024 Jun 10; 25(6):3312-3324. PubMed ID: 38728671
    [Abstract] [Full Text] [Related]

  • 4. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP, Hsu SH.
    Acta Biomater; 2023 Jul 01; 164():124-138. PubMed ID: 37088162
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering.
    Yang B, Yao F, Hao T, Fang W, Ye L, Zhang Y, Wang Y, Li J, Wang C.
    Adv Healthc Mater; 2016 Feb 18; 5(4):474-88. PubMed ID: 26626543
    [Abstract] [Full Text] [Related]

  • 7. Photopatterning of conductive hydrogels which exhibit tissue-like properties.
    Sifringer L, De Windt L, Bernhard S, Amos G, Clément B, Duru J, Tibbitt MW, Tringides CM.
    J Mater Chem B; 2024 Oct 17; 12(40):10272-10284. PubMed ID: 39298131
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures.
    Suntornnond R, Tan EYS, An J, Chua CK.
    Sci Rep; 2017 Dec 04; 7(1):16902. PubMed ID: 29203812
    [Abstract] [Full Text] [Related]

  • 11. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A, Distler T, Tihminlioglu F, Boccaccini AR.
    Biofabrication; 2023 Feb 15; 15(2):. PubMed ID: 36706451
    [Abstract] [Full Text] [Related]

  • 12. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR, Zhang H, Chen J, Zhou Y, Wang R, Fu J, Müller-Buschbaum P, Zhong Q.
    ACS Appl Mater Interfaces; 2021 May 19; 13(19):22902-22913. PubMed ID: 33960765
    [Abstract] [Full Text] [Related]

  • 13. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.
    Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, Sultan MT, Lee OJ, Lee JS, Yoon SI, Hong IS, Khang G, Lee SJ, Yoo JJ, Park CH.
    Nat Commun; 2018 Apr 24; 9(1):1620. PubMed ID: 29693652
    [Abstract] [Full Text] [Related]

  • 14. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L, Wang Y, Liu Z, Ma C, Yan H, Xu N, Gang F, Wang X, Zhao L, Sun X.
    Tissue Eng Part B Rev; 2019 Oct 24; 25(5):398-411. PubMed ID: 31115274
    [Abstract] [Full Text] [Related]

  • 15. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B, Li J, Lei X, Cheng P, Song Y, Gao Y, Hu J, Wang C, Zhang S, Li D, Wu H, Sang H, Bi L, Pei G.
    Mater Sci Eng C Mater Biol Appl; 2020 Jul 24; 112():110905. PubMed ID: 32409059
    [Abstract] [Full Text] [Related]

  • 16. Conductive GelMA/alginate/polypyrrole/graphene hydrogel as a potential scaffold for cardiac tissue engineering; Physiochemical, mechanical, and biological evaluations.
    Kaviani S, Talebi A, Labbaf S, Karimzadeh F.
    Int J Biol Macromol; 2024 Feb 24; 259(Pt 2):129276. PubMed ID: 38211921
    [Abstract] [Full Text] [Related]

  • 17. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN, Lee SJ, Timsina R, Qiu X, Castro NJ, Zhang LG.
    Mater Sci Eng C Mater Biol Appl; 2019 Jun 24; 99():582-590. PubMed ID: 30889733
    [Abstract] [Full Text] [Related]

  • 18. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H, Zhang B, Bi J, Hassan K, Tung TT, Losic D.
    J Mater Chem B; 2020 Jul 15; 8(27):5862-5876. PubMed ID: 32558857
    [Abstract] [Full Text] [Related]

  • 19. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G, Oh S, Seok JM, Park SA, Lee JY.
    Nanoscale; 2019 Dec 28; 11(48):23275-23285. PubMed ID: 31782460
    [Abstract] [Full Text] [Related]

  • 20. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering.
    Sasikumar SC, Goswami U, Raichur AM.
    ACS Appl Bio Mater; 2024 Aug 19; 7(8):5411-5422. PubMed ID: 38996006
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.