These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 39117456
1. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity. Bridi MCD, Hong S, Severin D, Moreno C, Contreras A, Kirkwood A. J Neurosci; 2024 Sep 04; 44(36):. PubMed ID: 39117456 [Abstract] [Full Text] [Related]
2. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer's disease. Hanson JE, Pare JF, Deng L, Smith Y, Zhou Q. Neurobiol Dis; 2015 Feb 04; 74():254-62. PubMed ID: 25484285 [Abstract] [Full Text] [Related]
3. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Cereb Cortex; 2020 Apr 14; 30(4):2555-2572. PubMed ID: 31832634 [Abstract] [Full Text] [Related]
4. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex. Yoshimura Y, Inaba M, Yamada K, Kurotani T, Begum T, Reza F, Maruyama T, Komatsu Y. Eur J Neurosci; 2008 Aug 14; 28(4):730-43. PubMed ID: 18657180 [Abstract] [Full Text] [Related]
5. Two distinct mechanisms for experience-dependent homeostasis. Bridi MCD, de Pasquale R, Lantz CL, Gu Y, Borrell A, Choi SY, He K, Tran T, Hong SZ, Dykman A, Lee HK, Quinlan EM, Kirkwood A. Nat Neurosci; 2018 Jun 14; 21(6):843-850. PubMed ID: 29760525 [Abstract] [Full Text] [Related]
6. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Smith GB, Heynen AJ, Bear MF. Philos Trans R Soc Lond B Biol Sci; 2009 Feb 12; 364(1515):357-67. PubMed ID: 18977732 [Abstract] [Full Text] [Related]
7. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Dalton GL, Wu DC, Wang YT, Floresco SB, Phillips AG. Neuropharmacology; 2012 Feb 12; 62(2):797-806. PubMed ID: 21925518 [Abstract] [Full Text] [Related]
8. Comparison of long-term potentiation (LTP) in the medial (monocular) and lateral (binocular) rat primary visual cortex. Kuo MC, Dringenberg HC. Brain Res; 2012 Dec 07; 1488():51-9. PubMed ID: 23063890 [Abstract] [Full Text] [Related]
9. Evidence for altered NMDA receptor function as a basis for metaplasticity in visual cortex. Philpot BD, Espinosa JS, Bear MF. J Neurosci; 2003 Jul 02; 23(13):5583-8. PubMed ID: 12843259 [Abstract] [Full Text] [Related]
10. Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Huang S, Treviño M, He K, Ardiles A, Pasquale Rd, Guo Y, Palacios A, Huganir R, Kirkwood A. Neuron; 2012 Feb 09; 73(3):497-510. PubMed ID: 22325202 [Abstract] [Full Text] [Related]
11. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice. Lickey ME, Pham TA, Gordon B. Vision Res; 2004 Dec 09; 44(28):3381-7. PubMed ID: 15536006 [Abstract] [Full Text] [Related]
12. NMDA receptor antagonists reveal age-dependent differences in the properties of visual cortical plasticity. de Marchena J, Roberts AC, Middlebrooks PG, Valakh V, Yashiro K, Wilfley LR, Philpot BD. J Neurophysiol; 2008 Oct 09; 100(4):1936-48. PubMed ID: 18667547 [Abstract] [Full Text] [Related]
13. Metaplastic up-regulation of LTP in the rat visual cortex by monocular visual training: requirement of task mastery, hemispheric specificity, and NMDA-GluN2B involvement. Hager AM, Gagolewicz PJ, Rodier S, Kuo MC, Dumont ÉC, Dringenberg HC. Neuroscience; 2015 May 07; 293():171-86. PubMed ID: 25711939 [Abstract] [Full Text] [Related]
14. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo. Speechley WJ, Hogsden JL, Dringenberg HC. Eur J Neurosci; 2007 Nov 07; 26(9):2576-84. PubMed ID: 17970743 [Abstract] [Full Text] [Related]
15. Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex. Rodriguez G, Mesik L, Gao M, Parkins S, Saha R, Lee HK. J Neurosci; 2019 Sep 25; 39(39):7664-7673. PubMed ID: 31413075 [Abstract] [Full Text] [Related]
16. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex. Yoshimura Y, Ohmura T, Komatsu Y. J Neurosci; 2003 Jul 23; 23(16):6557-66. PubMed ID: 12878697 [Abstract] [Full Text] [Related]
17. Individual NMDA receptor GluN2 subunit signaling domains differentially regulate the postnatal maturation of hippocampal excitatory synaptic transmission and plasticity but not dendritic morphology. Keith RE, Wild GA, Keith MJ, Chen D, Pack S, Dumas TC. Synapse; 2024 Jul 23; 78(4):e22292. PubMed ID: 38813758 [Abstract] [Full Text] [Related]
18. Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. Banerjee A, Meredith RM, Rodríguez-Moreno A, Mierau SB, Auberson YP, Paulsen O. Cereb Cortex; 2009 Dec 23; 19(12):2959-69. PubMed ID: 19363149 [Abstract] [Full Text] [Related]
19. Experience-enabled enhancement of adult visual cortex function. Tschetter WW, Alam NM, Yee CW, Gorz M, Douglas RM, Sagdullaev B, Prusky GT. J Neurosci; 2013 Mar 20; 33(12):5362-6. PubMed ID: 23516301 [Abstract] [Full Text] [Related]
20. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus. Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A. Cereb Cortex; 2016 Aug 20; 26(8):3637-3654. PubMed ID: 27282393 [Abstract] [Full Text] [Related] Page: [Next] [New Search]