These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 39117620

  • 21. Creation of magnetic skyrmions by surface acoustic waves.
    Yokouchi T, Sugimoto S, Rana B, Seki S, Ogawa N, Kasai S, Otani Y.
    Nat Nanotechnol; 2020 May; 15(5):361-366. PubMed ID: 32231267
    [Abstract] [Full Text] [Related]

  • 22. Predicting a polar analog of chiral blue phases in liquid crystals.
    Shamid SM, Allender DW, Selinger JV.
    Phys Rev Lett; 2014 Dec 05; 113(23):237801. PubMed ID: 25526159
    [Abstract] [Full Text] [Related]

  • 23. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry.
    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M.
    Nat Commun; 2015 Oct 08; 6():8504. PubMed ID: 26446692
    [Abstract] [Full Text] [Related]

  • 24. Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases.
    Chen G, Pei H, Zhang X, Shi W, Liu M, Faul CFJ, Yang B, Zhao Y, Liu K, Lu Z, Nie Z, Yang Y.
    Nat Commun; 2022 Sep 22; 13(1):5549. PubMed ID: 36138015
    [Abstract] [Full Text] [Related]

  • 25. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions.
    Kanazawa N, Seki S, Tokura Y.
    Adv Mater; 2017 Jul 22; 29(25):. PubMed ID: 28306166
    [Abstract] [Full Text] [Related]

  • 26. Spontaneous skyrmion ground states in magnetic metals.
    Rössler UK, Bogdanov AN, Pfleiderer C.
    Nature; 2006 Aug 17; 442(7104):797-801. PubMed ID: 16915285
    [Abstract] [Full Text] [Related]

  • 27. Ferroelectrically tunable magnetic skyrmions in two-dimensional multiferroics.
    He Z, Du W, Dou K, Dai Y, Huang B, Ma Y.
    Mater Horiz; 2023 Aug 29; 10(9):3450-3457. PubMed ID: 37345913
    [Abstract] [Full Text] [Related]

  • 28. Hysteretic Responses of Skyrmion Lattices to Electric Fields in Magnetoelectric Cu2OSeO3.
    Han MG, Camino F, Vorobyev PA, Garlow J, Rov R, Söhnel T, Seidel J, Mostovoy M, Tretiakov OA, Zhu Y.
    Nano Lett; 2023 Aug 09; 23(15):7143-7149. PubMed ID: 37523664
    [Abstract] [Full Text] [Related]

  • 29. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy.
    Hervé M, Dupé B, Lopes R, Böttcher M, Martins MD, Balashov T, Gerhard L, Sinova J, Wulfhekel W.
    Nat Commun; 2018 Mar 09; 9(1):1015. PubMed ID: 29523833
    [Abstract] [Full Text] [Related]

  • 30. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.
    Cattaneo L, Kos Ž, Savoini M, Kouwer P, Rowan A, Ravnik M, Muševič I, Rasing T.
    Soft Matter; 2016 Jan 21; 12(3):853-8. PubMed ID: 26549212
    [Abstract] [Full Text] [Related]

  • 31. Control of morphology and formation of highly geometrically confined magnetic skyrmions.
    Jin C, Li ZA, Kovács A, Caron J, Zheng F, Rybakov FN, Kiselev NS, Du H, Blügel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski RE.
    Nat Commun; 2017 Jun 05; 8():15569. PubMed ID: 28580935
    [Abstract] [Full Text] [Related]

  • 32. Deformation of Topologically-Protected Supercooled Skyrmions in a Thin Plate of Chiral Magnet Co8Zn8Mn4.
    Morikawa D, Yu X, Karube K, Tokunaga Y, Taguchi Y, Arima TH, Tokura Y.
    Nano Lett; 2017 Mar 08; 17(3):1637-1641. PubMed ID: 28135106
    [Abstract] [Full Text] [Related]

  • 33. Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states.
    Heo C, Kiselev NS, Nandy AK, Blügel S, Rasing T.
    Sci Rep; 2016 Jun 08; 6():27146. PubMed ID: 27273157
    [Abstract] [Full Text] [Related]

  • 34. Bending skyrmion strings under two-dimensional thermal gradients.
    Ran K, Tan W, Sun X, Liu Y, Dalgliesh RM, Steinke NJ, van der Laan G, Langridge S, Hesjedal T, Zhang S.
    Nat Commun; 2024 Jun 07; 15(1):4860. PubMed ID: 38849412
    [Abstract] [Full Text] [Related]

  • 35. Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers.
    Mandru AO, Yıldırım O, Tomasello R, Heistracher P, Penedo M, Giordano A, Suess D, Finocchio G, Hug HJ.
    Nat Commun; 2020 Dec 11; 11(1):6365. PubMed ID: 33311480
    [Abstract] [Full Text] [Related]

  • 36. Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets.
    Shigenaga T, Leonov AO.
    Nanomaterials (Basel); 2023 Jul 14; 13(14):. PubMed ID: 37513084
    [Abstract] [Full Text] [Related]

  • 37. Magnetic Skyrmion Materials.
    Tokura Y, Kanazawa N.
    Chem Rev; 2021 Mar 10; 121(5):2857-2897. PubMed ID: 33164494
    [Abstract] [Full Text] [Related]

  • 38. Skyrmion-skyrmion interaction in a magnetic film.
    Capic D, Garanin DA, Chudnovsky EM.
    J Phys Condens Matter; 2020 Jul 17; 32(41):. PubMed ID: 32526724
    [Abstract] [Full Text] [Related]

  • 39. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures.
    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A.
    Nat Nanotechnol; 2013 Nov 17; 8(11):839-44. PubMed ID: 24162000
    [Abstract] [Full Text] [Related]

  • 40. Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images.
    Denneulin T, Kovács A, Boltje R, Kiselev NS, Dunin-Borkowski RE.
    Sci Rep; 2024 May 29; 14(1):12286. PubMed ID: 38811716
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.