These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 3911844
1. The potential dependence of the intestinal Na+-dependent sugar transporter. Kimmich GA, Randles J, Restrepo D, Montrose M. Ann N Y Acad Sci; 1985; 456():63-76. PubMed ID: 3911844 [Abstract] [Full Text] [Related]
2. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine. Restrepo D, Kimmich GA. J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884 [Abstract] [Full Text] [Related]
3. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx. Restrepo D, Kimmich GA. Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314 [No Abstract] [Full Text] [Related]
4. SITS-sensitive Cl- conductance pathway in chick intestinal cells. Montrose M, Randles J, Kimmich GA. Am J Physiol; 1987 Nov; 253(5 Pt 1):C693-9. PubMed ID: 3688217 [Abstract] [Full Text] [Related]
5. A new method for determination of relative ion permeabilities in isolated cells. Kimmich GA, Randles J, Restrepo D, Montrose M. Am J Physiol; 1985 May; 248(5 Pt 1):C399-405. PubMed ID: 3993766 [Abstract] [Full Text] [Related]
6. The characterization of intestinal acidic amino-acid transport. Wingrove TG, Kimmich GA. Ann N Y Acad Sci; 1985 May; 456():80-2. PubMed ID: 2868687 [No Abstract] [Full Text] [Related]
7. Isolation of intestinal epithelial cells and evaluation of transport functions. Kimmich GA. Methods Enzymol; 1990 May; 192():324-40. PubMed ID: 2074796 [Abstract] [Full Text] [Related]
8. Sodium-dependent succinate transport by isolated chick intestinal cells. Kimmich GA, Randles J, Bennett E. Am J Physiol; 1991 Jun; 260(6 Pt 1):C1151-7. PubMed ID: 2058650 [Abstract] [Full Text] [Related]
9. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Kimmich GA, Randles J. Biochim Biophys Acta; 1980 Mar 13; 596(3):439-44. PubMed ID: 7362824 [Abstract] [Full Text] [Related]
10. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans. Prasad R, Höfer M. Biochim Biophys Acta; 1986 Oct 09; 861(2):377-80. PubMed ID: 3530329 [Abstract] [Full Text] [Related]
11. Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+. Kimmich GA, Randles J. Am J Physiol; 1988 Oct 09; 255(4 Pt 1):C486-94. PubMed ID: 3177623 [Abstract] [Full Text] [Related]
12. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Bakker EP. Biochim Biophys Acta; 1982 Sep 15; 681(3):474-83. PubMed ID: 6812627 [Abstract] [Full Text] [Related]
13. Development of Na+-dependent hexose transport in cultured renal epithelial cells (LLC-PK1). Weiss ER, Amsler K, Dawson WD, Cook JS. Ann N Y Acad Sci; 1985 Sep 15; 456():420-35. PubMed ID: 3004299 [No Abstract] [Full Text] [Related]
14. Na(+)-coupled alanine transport in LLC-PK1 cells. Kimmich GA, Randles J, Wilson J. Am J Physiol; 1994 Oct 15; 267(4 Pt 1):C1119-29. PubMed ID: 7943275 [Abstract] [Full Text] [Related]
15. Quantitative use of weak bases for estimation of cellular pH gradients. Montrose MH, Kimmich GA. Am J Physiol; 1986 Mar 15; 250(3 Pt 1):C418-22. PubMed ID: 2420195 [Abstract] [Full Text] [Related]
16. Sodium-sugar coupling stoichiometry in chick intestinal cells. Kimmich GA, Randles J. Am J Physiol; 1984 Jul 15; 247(1 Pt 1):C74-82. PubMed ID: 6331188 [Abstract] [Full Text] [Related]
17. Intestinal transport: studies with isolated epithelial cells. Kimmich GA. Environ Health Perspect; 1979 Dec 15; 33():37-44. PubMed ID: 540624 [Abstract] [Full Text] [Related]
18. alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium. Kimmich GA, Randles J. Am J Physiol; 1981 Nov 15; 241(5):C227-32. PubMed ID: 7304734 [Abstract] [Full Text] [Related]
19. Membrane potential of olfactory bulb synaptosomal fractions: characterization with the lipophilic cation tetraphenylphosphonium. Rochel S, Lichtstein D, Blume AJ, Margolis FL. J Neurosci; 1981 Oct 15; 1(10):1180-92. PubMed ID: 6116747 [Abstract] [Full Text] [Related]
20. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution. Rugolo M, Lenaz G. J Bioenerg Biomembr; 1987 Dec 15; 19(6):705-18. PubMed ID: 3693347 [Abstract] [Full Text] [Related] Page: [Next] [New Search]