These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 39121528
41. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut. Li Y, Liu D, Zhu C, Shen X, Liu Y, You T. J Hazard Mater; 2020 Apr 05; 387():122001. PubMed ID: 31901843 [Abstract] [Full Text] [Related]
42. Ultrasensitive Electrochemiluminescence Biosensing Platform Based on Polymer Dots with Aggregation-Induced Emission for Dual-Biotoxin Assay. Xiang S, Li J, Wang F, Yang Y, Yang H, Cai R, Tan W. ACS Appl Mater Interfaces; 2024 Jul 24; 16(29):37748-37756. PubMed ID: 38990678 [Abstract] [Full Text] [Related]
43. Cu2O nanoparticles with morphology-dependent peroxidase mimic activity: a novel colorimetric biosensor for deoxynivalenol detection. Zhu X, Zhang B, Wang J, He Y, Chen Z, Chang W, Xie X, Zhu H. Mikrochim Acta; 2024 Sep 10; 191(10):588. PubMed ID: 39256210 [Abstract] [Full Text] [Related]
44. An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA-gold nanoparticle bioconjugates. Abedalwafa MA, Tang Z, Qiao Y, Mei Q, Yang G, Li Y, Wang L. Mikrochim Acta; 2020 May 29; 187(6):360. PubMed ID: 32468208 [Abstract] [Full Text] [Related]
45. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Chen J, Zhang X, Cai S, Wu D, Chen M, Wang S, Zhang J. Biosens Bioelectron; 2014 Jul 15; 57():226-31. PubMed ID: 24590125 [Abstract] [Full Text] [Related]
46. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N, Yuan S, Zhang M, Wang J, Li Y, Peng Y, Bai J, Ning B, Liang J, Gao Z. Mikrochim Acta; 2019 Nov 12; 186(12):765. PubMed ID: 31713694 [Abstract] [Full Text] [Related]
47. Development of a Direct Competitive ELISA Kit for Detecting Deoxynivalenol Contamination in Wheat. Han L, Li YT, Jiang JQ, Li RF, Fan GY, Lv JM, Zhou Y, Zhang WJ, Wang ZL. Molecules; 2019 Dec 22; 25(1):. PubMed ID: 31877851 [Abstract] [Full Text] [Related]
48. A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Shayesteh OH, Ghavami R. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb 05; 226():117644. PubMed ID: 31614271 [Abstract] [Full Text] [Related]
49. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. He Y, Tian F, Zhou J, Zhao Q, Fu R, Jiao B. J Hazard Mater; 2020 Apr 15; 388():121758. PubMed ID: 31796354 [Abstract] [Full Text] [Related]
50. A multimode biosensor based on prussian blue nanoparticles loaded with gold nanoclusters for the detection of aflatoxin B1. Fu Z, Huang J, Wei W, Wu Z, Shi X. Anal Methods; 2024 May 16; 16(19):3088-3098. PubMed ID: 38690679 [Abstract] [Full Text] [Related]
51. Integrating aptasensor with an explosive mass-tag signal amplification strategy for ultrasensitive and multiplexed analysis using a miniature mass spectrometer. Zhang Y, Li L, Li J, Ma Q. Biosens Bioelectron; 2024 Apr 01; 249():116010. PubMed ID: 38215638 [Abstract] [Full Text] [Related]
52. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Fan D, Zhai Q, Zhou W, Zhu X, Wang E, Dong S. Biosens Bioelectron; 2016 Nov 15; 85():771-776. PubMed ID: 27281107 [Abstract] [Full Text] [Related]
53. Magnetic aptamer copper nanoclusters fluorescent biosensor for the visual detection of zearalenone based on docking-aided rational tailoring. Yu Y, Chen K, Du Z, Fang B, Zhan J, Zhu L, Xu W. Food Chem; 2024 Aug 01; 448():139127. PubMed ID: 38608399 [Abstract] [Full Text] [Related]
54. A sandwich FRET biosensor for lysozyme detection based on peptide-functionalized gold nanoparticles and FAM-labeled aptamer. Liu M, Zhuang H, Zhang Y, Jia Y. Talanta; 2024 Aug 15; 276():126226. PubMed ID: 38754187 [Abstract] [Full Text] [Related]
55. An impedimetric aptasensor for ultrasensitive detection of Penicillin G based on the use of reduced graphene oxide and gold nanoparticles. Mohammad-Razdari A, Ghasemi-Varnamkhasti M, Izadi Z, Ensafi AA, Rostami S, Siadat M. Mikrochim Acta; 2019 May 23; 186(6):372. PubMed ID: 31123905 [Abstract] [Full Text] [Related]
56. Natural Occurrence of Deoxynivalenol and Its Acetylated Derivatives in Chinese Maize and Wheat Collected in 2017. Yan P, Liu Z, Liu S, Yao L, Liu Y, Wu Y, Gong Z. Toxins (Basel); 2020 Mar 22; 12(3):. PubMed ID: 32235760 [Abstract] [Full Text] [Related]
57. Rapid and selective detection of Bacillus cereus in food using cDNA-based up-conversion fluorescence spectrum copy and aptamer modified magnetic separation. Zheng H, Sheng R, Li H, Ahmad W, Chen Q. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb 15; 267(Pt 2):120618. PubMed ID: 34802926 [Abstract] [Full Text] [Related]
58. Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS2. Duan N, Li C, Song M, Ren K, Wang Z, Wu S. Mikrochim Acta; 2022 Jul 28; 189(8):296. PubMed ID: 35900604 [Abstract] [Full Text] [Related]
59. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes. Zhou L, Gan N, Zhou Y, Li T, Cao Y, Chen Y. Talanta; 2017 May 15; 167():544-549. PubMed ID: 28340759 [Abstract] [Full Text] [Related]
60. A novel yeast-based biosensor for the quick determination of Deoxynivalenol. Yang H, Du L, Geng L, Liu X, Xu Z, Liu R, Liu W, Zuo H, Chen Z, Wang X, Zhang P, Sun T. Anal Chim Acta; 2024 Aug 01; 1315():342760. PubMed ID: 38879206 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]