These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 39121886
1. Ti3C2Tx@PLGA/Icaritin microspheres-modified PLGA/β-TCP scaffolds modulate Icaritin release to enhance bone regeneration through near-infrared response. Gu C, Chen H, Zhao Y, Xi H, Tan X, Xue P, Sun G, Jiang X, Du B, Liu X. Biomed Mater; 2024 Aug 22; 19(5):. PubMed ID: 39121886 [Abstract] [Full Text] [Related]
2. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH, Wang XL, Xie XH, Zheng LZ, Yao D, Wang DP, Leng Y, Zhang G, Qin L. Acta Biomater; 2012 Aug 22; 8(8):3128-37. PubMed ID: 22543006 [Abstract] [Full Text] [Related]
4. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L. J Tissue Eng Regen Med; 2015 Aug 22; 9(8):961-72. PubMed ID: 23255530 [Abstract] [Full Text] [Related]
5. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Lai Y, Cao H, Wang X, Chen S, Zhang M, Wang N, Yao Z, Dai Y, Xie X, Zhang P, Yao X, Qin L. Biomaterials; 2018 Jan 22; 153():1-13. PubMed ID: 29096397 [Abstract] [Full Text] [Related]
6. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH, Wang XL, Zhang G, He YX, Wang XH, Liu Z, He K, Peng J, Leng Y, Qin L. Biomed Mater; 2010 Oct 22; 5(5):054109. PubMed ID: 20876954 [Abstract] [Full Text] [Related]
7. PLGA/TCP composite scaffold incorporating bioactive phytomolecule icaritin for enhancement of bone defect repair in rabbits. Chen SH, Lei M, Xie XH, Zheng LZ, Yao D, Wang XL, Li W, Zhao Z, Kong A, Xiao DM, Wang DP, Pan XH, Wang YX, Qin L. Acta Biomater; 2013 May 22; 9(5):6711-22. PubMed ID: 23376238 [Abstract] [Full Text] [Related]
8. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M. J Periodontal Res; 2015 Apr 22; 50(2):265-73. PubMed ID: 24966062 [Abstract] [Full Text] [Related]
9. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Lin S, Cui L, Chen G, Huang J, Yang Y, Zou K, Lai Y, Wang X, Zou L, Wu T, Cheng JCY, Li G, Wei B, Lee WYW. Biomaterials; 2019 Mar 22; 196():109-121. PubMed ID: 29655516 [Abstract] [Full Text] [Related]
12. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Lai Y, Li Y, Cao H, Long J, Wang X, Li L, Li C, Jia Q, Teng B, Tang T, Peng J, Eglin D, Alini M, Grijpma DW, Richards G, Qin L. Biomaterials; 2019 Mar 22; 197():207-219. PubMed ID: 30660996 [Abstract] [Full Text] [Related]
13. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model. Shi GS, Li YY, Luo YP, Jin JF, Sun YX, Zheng LZ, Lai YX, Li L, Fu GH, Qin L, Chen SH. J Orthop Translat; 2020 Sep 22; 24():112-120. PubMed ID: 32775203 [Abstract] [Full Text] [Related]
14. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. Gupta V, Lyne DV, Barragan M, Berkland CJ, Detamore MS. J Mater Sci Mater Med; 2016 Jul 22; 27(7):121. PubMed ID: 27272903 [Abstract] [Full Text] [Related]
15. BMP-2-releasing gelatin microspheres/PLGA scaffolds for bone repairment of X-ray-radiated rabbit radius defects. Xia P, Wang S, Qi Z, Zhang W, Sun Y. Artif Cells Nanomed Biotechnol; 2019 Dec 22; 47(1):1662-1673. PubMed ID: 31032645 [Abstract] [Full Text] [Related]
16. Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies. Jose G, Shalumon KT, Liao HT, Kuo CY, Chen JP. Int J Mol Sci; 2020 Jan 14; 21(2):. PubMed ID: 31947689 [Abstract] [Full Text] [Related]
17. Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis: Proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits. Qin L, Yao D, Zheng L, Liu WC, Liu Z, Lei M, Huang L, Xie X, Wang X, Chen Y, Yao X, Peng J, Gong H, Griffith JF, Huang Y, Zheng Y, Feng JQ, Liu Y, Chen S, Xiao D, Wang D, Xiong J, Pei D, Zhang P, Pan X, Wang X, Lee KM, Cheng CY. Biomaterials; 2015 Aug 14; 59():125-43. PubMed ID: 25968462 [Abstract] [Full Text] [Related]
18. Physical properties and biocompatibility of a core-sheath structure composite scaffold for bone tissue engineering in vitro. Wang C, Meng G, Zhang L, Xiong Z, Liu J. J Biomed Biotechnol; 2012 Aug 14; 2012():579141. PubMed ID: 22505814 [Abstract] [Full Text] [Related]
19. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Acta Biomater; 2019 Feb 14; 85():294-309. PubMed ID: 30553873 [Abstract] [Full Text] [Related]
20. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration. Liang W, Gao M, Lou J, Bai Y, Zhang J, Lu T, Sun X, Ye J, Li B, Sun L, Heng BC, Zhang X, Deng X. J Mater Chem B; 2020 Apr 21; 8(15):3038-3049. PubMed ID: 32196049 [Abstract] [Full Text] [Related] Page: [Next] [New Search]