These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
115 related items for PubMed ID: 39124389
1. Comparison of Quantitative and Qualitative EDXRF Analysis for Provenance Study of Archaeological Ceramics. Gajic-Kvascev M, Andric V, Jancic-Heinemann R, Mladenovic O, Bulatovic A. Materials (Basel); 2024 Jul 27; 17(15):. PubMed ID: 39124389 [Abstract] [Full Text] [Related]
2. Archaeometric researches on the provenance of Mediterranean Archaic Phoenician and Punic pottery. Amadori ML, Del Vais C, Fermo P, Pallante P. Environ Sci Pollut Res Int; 2017 Jun 27; 24(16):13921-13949. PubMed ID: 27339803 [Abstract] [Full Text] [Related]
3. Study of archaeological ceramics from the north coast of Peru by EDXRF and exploratory multivariate analysis. Desanti CSA, Appoloni CR, Ikeoka RA, Suñer MMA, Fagundes M, Silva FA. Appl Radiat Isot; 2024 Dec 27; 214():111541. PubMed ID: 39378667 [Abstract] [Full Text] [Related]
4. [Study on the cultural relic material site and period by EDXRF]. Zhou SH, Fu L, Leung BL. Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May 27; 28(5):1181-5. PubMed ID: 18720829 [Abstract] [Full Text] [Related]
5. Non-destructive characterisation and classification of ceramic artefacts using pEDXRF and statistical pattern recognition. Gajić-Kvaščev MD, Marić-Stojanović MD, Jančić-Heinemann RM, Kvaščev GS, Andrić VDj. Chem Cent J; 2012 Sep 14; 6(1):102. PubMed ID: 22978788 [Abstract] [Full Text] [Related]
6. Combination of Total-Reflection X-Ray Fluorescence Method and Chemometric Techniques for Provenance Study of Archaeological Ceramics. Maltsev AS, Umarova NN, Pashkova GV, Mukhamedova MM, Shergin DL, Panchuk VV, Kirsanov DO, Demonterova EI. Molecules; 2023 Jan 21; 28(3):. PubMed ID: 36770765 [Abstract] [Full Text] [Related]
9. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials. Saiki O, Koizumi H, Akazawa N, Kodaira A, Okamura K, Matsumura H. J Oral Sci; 2016 Mar 21; 58(1):117-23. PubMed ID: 27021548 [Abstract] [Full Text] [Related]
10. Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. Hein A, Tsolakidou A, Iliopoulos I, Mommsen H, Buxeda i Garrigós J, Montana G, Kilikoglou V. Analyst; 2002 Apr 21; 127(4):542-53. PubMed ID: 12022656 [Abstract] [Full Text] [Related]
11. Comparative analysis of ancient ceramics by neutron activation analysis, inductively coupled plasma-optical-emission spectrometry, inductively coupled plasma-mass spectrometry, and X-ray fluorescence. Tsolakidou A, Kilikoglou V. Anal Bioanal Chem; 2002 Oct 21; 374(3):566-72. PubMed ID: 12373411 [Abstract] [Full Text] [Related]
12. Micro X-ray Fluorescence Study of Late Pre-Hispanic Ceramics from the Western Slopes of the South Central Andes Region in the Arica y Parinacota Region, Chile: A New Methodological Approach. Flewett S, Saintenoy T, Sepúlveda M, Mosso EF, Robles C, Vega K, Gutierrez S, Romero A, Finney L, Maxey E, Vogt S. Appl Spectrosc; 2016 Oct 01; 70(10):1759-1769. PubMed ID: 27530128 [Abstract] [Full Text] [Related]
13. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection. Bilandžić MD, Wollgarten S, Stollenwerk J, Poprawe R, Esteves-Oliveira M, Fischer H. Dent Mater; 2017 Sep 01; 33(9):995-1003. PubMed ID: 28662857 [Abstract] [Full Text] [Related]
14. Utilization of sludge waste from natural rubber manufacturing process as a raw material for clay-ceramic production. Vichaphund S, Intiya W, Kongkaew A, Loykulnant S, Thavorniti P. Environ Technol; 2012 Dec 01; 33(22-24):2507-10. PubMed ID: 23437647 [Abstract] [Full Text] [Related]
15. Microstructural, Mineralogical and Petrographical Characteristics of the Medieval Ceramics from the Studenica Monastery (UNESCO World Heritage Site): Implications on the Pottery Technology and Provenance of The Raw Material. Šarić K, Bikić V, Erić S. Microsc Microanal; 2018 Dec 01; 24(6):744-761. PubMed ID: 30588910 [Abstract] [Full Text] [Related]
16. Handheld X-ray Fluorescence (XRF) Versus Wavelength Dispersive XRF: Characterization of Chinese Blue-and-White Porcelain Sherds Using Handheld and Laboratory-Type XRF Instruments. Simsek Franci G. Appl Spectrosc; 2020 Mar 01; 74(3):314-322. PubMed ID: 31724430 [Abstract] [Full Text] [Related]
17. Applicability of Low-Cost Binders for the Quantitative Elemental Analysis of Urinary Stones Using EDXRF Based on Fundamental Parameter Approach. Shaltout AA, Dabi MM, Ibrahim MM, Al-Ghamdi AS, Elnagar E. Biol Trace Elem Res; 2020 Jun 01; 195(2):417-426. PubMed ID: 31486014 [Abstract] [Full Text] [Related]
18. Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry. Scott RB, Eekelers K, Degryse P. Appl Spectrosc; 2016 Jan 01; 70(1):94-109. PubMed ID: 26767636 [Abstract] [Full Text] [Related]
20. Chemometrics applied to cathodoluminescence images: a new approach to classify pre-Columbian artefacts from northern Peru. Ammari F, Del-Solar-Velarde N, Chapoulie R, Bousquet B. Environ Sci Pollut Res Int; 2017 Jan 01; 24(3):2205-2209. PubMed ID: 27838903 [Abstract] [Full Text] [Related] Page: [Next] [New Search]