These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 39125892
1. Circadian Rhythm and Nitrogen Metabolism Participate in the Response of Boron Deficiency in the Root of Brassica napus. Liu L, Duan X, Xu H, Zhao P, Shi L, Xu F, Wang S. Int J Mol Sci; 2024 Jul 30; 25(15):. PubMed ID: 39125892 [Abstract] [Full Text] [Related]
2. Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus. He M, Wang S, Zhang C, Liu L, Zhang J, Qiu S, Wang H, Yang G, Xue S, Shi L, Xu F. PLoS Genet; 2021 Jul 30; 17(7):e1009661. PubMed ID: 34197459 [Abstract] [Full Text] [Related]
3. Specific and multiple-target gene silencing reveals function diversity of BnaA2.NIP5;1 and BnaA3.NIP5;1 in Brassica napus. He M, Zhang C, Chu L, Wang S, Shi L, Xu F. Plant Cell Environ; 2021 Sep 30; 44(9):3184-3194. PubMed ID: 33937996 [Abstract] [Full Text] [Related]
4. Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1. Feng Y, Cui R, Wang S, He M, Hua Y, Shi L, Ye X, Xu F. Plant Biotechnol J; 2020 May 30; 18(5):1241-1254. PubMed ID: 31705705 [Abstract] [Full Text] [Related]
5. BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus. Song G, Li X, Munir R, Khan AR, Azhar W, Khan S, Gan Y. Plant Physiol Biochem; 2021 Apr 30; 161():36-45. PubMed ID: 33561659 [Abstract] [Full Text] [Related]
6. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T. Plant Cell; 2006 Jun 30; 18(6):1498-509. PubMed ID: 16679457 [Abstract] [Full Text] [Related]
7. Proteomic alterations of Brassica napus root in response to boron deficiency. Wang Z, Wang Z, Shi L, Wang L, Xu F. Plant Mol Biol; 2010 Oct 30; 74(3):265-78. PubMed ID: 20694506 [Abstract] [Full Text] [Related]
8. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Li Q, Ding G, Yang N, White PJ, Ye X, Cai H, Lu J, Shi L, Xu F. Plant Cell Environ; 2020 Mar 30; 43(3):712-731. PubMed ID: 31759338 [Abstract] [Full Text] [Related]
9. BnaA4.BOR2 contributes the tolerance of rapeseed to boron deficiency by improving the transport of boron from root to shoot. Liu W, Wang S, Ye X, Xu F. Plant Physiol Biochem; 2024 Mar 30; 208():108508. PubMed ID: 38490152 [Abstract] [Full Text] [Related]
10. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1. Yang H, Menz J, Häussermann I, Benz M, Fujiwara T, Ludewig U. Plant Cell Physiol; 2015 Aug 30; 56(8):1588-97. PubMed ID: 25957355 [Abstract] [Full Text] [Related]
11. Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus. Han YL, Song HX, Liao Q, Yu Y, Jian SF, Lepo JE, Liu Q, Rong XM, Tian C, Zeng J, Guan CY, Ismail AM, Zhang ZH. Plant Physiol; 2016 Mar 30; 170(3):1684-98. PubMed ID: 26757990 [Abstract] [Full Text] [Related]
12. Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Kato Y, Miwa K, Takano J, Wada M, Fujiwara T. Plant Cell Physiol; 2009 Jan 30; 50(1):58-66. PubMed ID: 19017629 [Abstract] [Full Text] [Related]
13. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis. Ren F, Zhao CZ, Liu CS, Huang KL, Guo QQ, Chang LL, Xiong H, Li XB. Plant Mol Biol; 2014 Dec 30; 86(6):595-607. PubMed ID: 25194430 [Abstract] [Full Text] [Related]
14. Comparative Transcriptome Analysis in Oilseed Rape (Brassica napus) Reveals Distinct Gene Expression Details between Nitrate and Ammonium Nutrition. Tang W, He X, Qian L, Wang F, Zhang Z, Sun C, Lin L, Guan C. Genes (Basel); 2019 May 22; 10(5):. PubMed ID: 31121949 [Abstract] [Full Text] [Related]
15. The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Zhang Q, Chen H, He M, Zhao Z, Cai H, Ding G, Shi L, Xu F. Plant Cell Environ; 2017 Sep 22; 40(9):1819-1833. PubMed ID: 28545156 [Abstract] [Full Text] [Related]
16. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F. Ann Bot; 2014 Sep 22; 114(3):549-59. PubMed ID: 24989788 [Abstract] [Full Text] [Related]
17. Transcriptomic Dissection of Allotetraploid Rapeseed (Brassica napus L.) in Responses to Nitrate and Ammonium Regimes and Functional Analysis of BnaA2.Gln1;4 in Arabidopsis. Zhou T, Wu P, Yue C, Huang J, Zhang Z, Hua Y. Plant Cell Physiol; 2022 Jun 15; 63(6):755-769. PubMed ID: 35325216 [Abstract] [Full Text] [Related]
18. Differential Alternative Splicing Genes in Response to Boron Deficiency in Brassica napus. Gu J, Li W, Wang S, Zhang X, Coules A, Ding G, Xu F, Ren J, Lu C, Shi L. Genes (Basel); 2019 Mar 18; 10(3):. PubMed ID: 30889858 [Abstract] [Full Text] [Related]
19. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. Diehn TA, Bienert MD, Pommerrenig B, Liu Z, Spitzer C, Bernhardt N, Fuge J, Bieber A, Richet N, Chaumont F, Bienert GP. Plant J; 2019 Oct 18; 100(1):68-82. PubMed ID: 31148338 [Abstract] [Full Text] [Related]
20. A novel Brassica-rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency. Yuan P, Ding GD, Cai HM, Jin KM, Broadley MR, Xu FS, Shi L. Ann Bot; 2016 Aug 18; 118(2):173-84. PubMed ID: 27279575 [Abstract] [Full Text] [Related] Page: [Next] [New Search]