These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 3913463

  • 21. Reduction of cyclopropene by NifV- and wild-type nitrogenases from Klebsiella pneumoniae.
    Gemoets JP, Bravo M, McKenna CE, Leigh GJ, Smith BE.
    Biochem J; 1989 Mar 01; 258(2):487-91. PubMed ID: 2650681
    [Abstract] [Full Text] [Related]

  • 22. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex.
    Yousafzai FK, Eady RR.
    Biochem J; 1999 May 01; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587
    [Abstract] [Full Text] [Related]

  • 23. Kinetic Understanding of N2 Reduction versus H2 Evolution at the E4(4H) Janus State in the Three Nitrogenases.
    Harris DF, Yang ZY, Dean DR, Seefeldt LC, Hoffman BM.
    Biochemistry; 2018 Oct 02; 57(39):5706-5714. PubMed ID: 30183278
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The HD Reaction of Nitrogenase: a Detailed Mechanism.
    Dance I.
    Chemistry; 2023 Jan 18; 29(4):e202202502. PubMed ID: 36274057
    [Abstract] [Full Text] [Related]

  • 26. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics.
    Thorneley RN, Eady RR.
    Biochem J; 1977 Nov 01; 167(2):457-61. PubMed ID: 339912
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Isolation of an iron-molybdenum cofactor from nitrogenase.
    Shah VK, Brill WJ.
    Proc Natl Acad Sci U S A; 1977 Aug 01; 74(8):3249-53. PubMed ID: 410019
    [Abstract] [Full Text] [Related]

  • 30. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii.
    Lowe DJ, Fisher K, Thorneley RN, Vaughn SA, Burgess BK.
    Biochemistry; 1989 Oct 17; 28(21):8460-6. PubMed ID: 2605195
    [Abstract] [Full Text] [Related]

  • 31. Nitrogenase from nifV mutants of Klebsiella pneumoniae contains an altered form of the iron-molybdenum cofactor.
    Hawkes TR, McLean PA, Smith BE.
    Biochem J; 1984 Jan 01; 217(1):317-21. PubMed ID: 6320803
    [Abstract] [Full Text] [Related]

  • 32. Correspondence of the larger subunit of the MoFe-protein in clostridial nitrogenase to the nif D gene products of other N2-fixing organisms.
    Hase T, Nakano T, Matsubara H, Zumft WG.
    J Biochem; 1981 Jul 01; 90(1):295-8. PubMed ID: 7026551
    [Abstract] [Full Text] [Related]

  • 33. Kinetic studies on Klebsiella pneumoniae nitrogenase.
    Parejko RA, Wilson PW.
    Proc Natl Acad Sci U S A; 1971 Sep 01; 68(9):2016-8. PubMed ID: 4943781
    [Abstract] [Full Text] [Related]

  • 34. Relative levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in some N2 fixing bacteria during derepression and repression of nitrogenase.
    Kleiner D, Phillips S.
    Arch Microbiol; 1981 Jan 01; 128(3):341-2. PubMed ID: 7011243
    [Abstract] [Full Text] [Related]

  • 35. Temperature control of nitrogen fixation in Klebsiella pneumoniae.
    Hennecke H, Shanmugam KT.
    Arch Microbiol; 1979 Jan 01; 123(3):259-65. PubMed ID: 393199
    [Abstract] [Full Text] [Related]

  • 36. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K, Dilworth MJ, Kim CH, Newton WE.
    Biochemistry; 2000 Mar 21; 39(11):2970-9. PubMed ID: 10715117
    [Abstract] [Full Text] [Related]

  • 37. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution.
    Clarke TA, Maritano S, Eady RR.
    Biochemistry; 2000 Sep 19; 39(37):11434-40. PubMed ID: 10985789
    [Abstract] [Full Text] [Related]

  • 38. Mechanism of Nitrogenase H2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects.
    Khadka N, Milton RD, Shaw S, Lukoyanov D, Dean DR, Minteer SD, Raugei S, Hoffman BM, Seefeldt LC.
    J Am Chem Soc; 2017 Sep 27; 139(38):13518-13524. PubMed ID: 28851217
    [Abstract] [Full Text] [Related]

  • 39. Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata.
    Jouanneau Y, Kelley BC, Berlier Y, Lespinat PA, Vignais PM.
    J Bacteriol; 1980 Aug 27; 143(2):628-36. PubMed ID: 7009556
    [Abstract] [Full Text] [Related]

  • 40. Nitrogenase of Klebsiella pneumoniae nifV mutants.
    McLean PA, Smith BE, Dixon RA.
    Biochem J; 1983 Jun 01; 211(3):589-97. PubMed ID: 6349611
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.