These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Covalent coupling of 4-thiouridine in the initiator methionine tRNA to specific lysine residues in Escherichia coli methionyl-tRNA synthetase. Leon O, Schulman LH. Biochemistry; 1987 Nov 03; 26(22):7113-21. PubMed ID: 3122828 [Abstract] [Full Text] [Related]
6. Modification of specific lysine residues in E. coli methionyl-tRNA synthetase by crosslinking to E. coli formylmethionine tRNA. Valenzuela D, Leon O, Schulman LH. Biochem Biophys Res Commun; 1984 Mar 15; 119(2):677-84. PubMed ID: 6424668 [Abstract] [Full Text] [Related]
7. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases. Hountondji C, Schmitter JM, Fukui T, Tagaya M, Blanquet S. Biochemistry; 1990 Dec 25; 29(51):11266-73. PubMed ID: 2271710 [Abstract] [Full Text] [Related]
8. Mapping of the active site of Escherichia coli methionyl-tRNA synthetase: identification of amino acid residues labeled by periodate-oxidized tRNA(fMet) molecules having modified lengths at the 3'-acceptor end. Hountondji C, Schmitter JM, Beauvallet C, Blanquet S. Biochemistry; 1990 Sep 04; 29(35):8190-8. PubMed ID: 1702021 [Abstract] [Full Text] [Related]
9. Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNAPhe. Hountondji C, Schmitter JM, Beauvallet C, Blanquet S. Biochemistry; 1987 Aug 25; 26(17):5433-9. PubMed ID: 2823880 [Abstract] [Full Text] [Related]
10. Study of the interaction of Escherichia coli methionyl-tRNA synthetase with tRNAfMet using chemical and enzymatic probes. Pelka H, Schulman LH. Biochemistry; 1986 Jul 29; 25(15):4450-6. PubMed ID: 3092857 [Abstract] [Full Text] [Related]
11. Modification of aminoacyl-tRNA synthetases with pyridoxal-5'-phosphate. Identification of the labeled amino acid residues. Kalogerakos T, Hountondji C, Berne PF, Dukta S, Blanquet S. Biochimie; 1994 Jul 29; 76(1):33-44. PubMed ID: 8031903 [Abstract] [Full Text] [Related]
13. Methionyl-tRNA synthetase induced 3'-terminal and delocalized conformational transition in tRNAfMet: steady-state fluorescence of tRNA with a single fluorophore. Ferguson BQ, Yang DC. Biochemistry; 1986 Feb 11; 25(3):529-39. PubMed ID: 3513829 [Abstract] [Full Text] [Related]
14. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase. Schulman LH, Pelka H, Susani M. Nucleic Acids Res; 1983 Mar 11; 11(5):1439-55. PubMed ID: 6338482 [Abstract] [Full Text] [Related]
15. Covalent coupling of the variable loop of the elongator methionine tRNA to a specific lysine residue in Escherichia coli methionyl-tRNA synthetase. Leon O, Schulman LO. Biochemistry; 1987 Apr 07; 26(7):1933-40. PubMed ID: 3109475 [Abstract] [Full Text] [Related]
18. Topographic modeling of free and methionyl-tRNA synthetase bound tRNAfMet by singlet-singlet energy transfer: bending of the 3'-terminal arm in tRNAfMet. Ferguson BQ, Yang DC. Biochemistry; 1986 Oct 21; 25(21):6572-8. PubMed ID: 3641634 [Abstract] [Full Text] [Related]
19. Reversible inactivation of Escherichia coli methionyl-tRNA synthetase by covalent attachment of formylmethionine tRNA to the tRNA binding site with a cleavable cross-linker. Schulman LH, Valenzuela D, Pelka H. Biochemistry; 1981 Oct 13; 20(21):6018-23. PubMed ID: 7030381 [Abstract] [Full Text] [Related]
20. Peptides at the tRNA binding site of the crystallizable monomeric form of E. coli methionyl-tRNA synthetase. Schulman LH, Pelka H, Leon O. Nucleic Acids Res; 1987 Dec 23; 15(24):10523-30. PubMed ID: 3320968 [Abstract] [Full Text] [Related] Page: [Next] [New Search]