These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 39142397

  • 21. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate.
    Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M.
    Environ Sci Technol; 2001 Apr 15; 35(8):1663-70. PubMed ID: 11329718
    [Abstract] [Full Text] [Related]

  • 22. Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments.
    Shi Y, Zwolinski MD, Schreiber ME, Bahr JM, Sewell GW, Hickey WJ.
    Appl Environ Microbiol; 1999 May 15; 65(5):2143-50. PubMed ID: 10224013
    [Abstract] [Full Text] [Related]

  • 23. Biodegradation of soluble aromatic compounds of jet fuel under anaerobic conditions: laboratory batch experiments.
    Zheng Z, Breedveld G, Aagaard P.
    Appl Microbiol Biotechnol; 2001 Nov 15; 57(4):572-8. PubMed ID: 11762606
    [Abstract] [Full Text] [Related]

  • 24. Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfate-reducing, nitrate-reducing, and iron-reducing redox conditions.
    Lee K, Ulrich A.
    Water Environ Res; 2021 Apr 15; 93(4):524-534. PubMed ID: 32892398
    [Abstract] [Full Text] [Related]

  • 25. Kinetics of BTEX degradation by a nitrate-reducing mixed culture.
    Szykowny D, Keasling JD.
    Ann N Y Acad Sci; 1997 Nov 21; 829():135-41. PubMed ID: 9472318
    [Abstract] [Full Text] [Related]

  • 26. Enhanced anaerobic biodegradation of benzene-toluene-ethylbenzene-xylene-ethanol mixtures in bioaugmented aquifer columns.
    Da Silva ML, Alvarez PJ.
    Appl Environ Microbiol; 2004 Aug 21; 70(8):4720-6. PubMed ID: 15294807
    [Abstract] [Full Text] [Related]

  • 27. BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MAH1.
    Qu D, Zhao Y, Sun J, Ren H, Zhou R.
    Can J Microbiol; 2015 Sep 21; 61(9):691-9. PubMed ID: 26221863
    [Abstract] [Full Text] [Related]

  • 28. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation.
    Kao CM, Chen CY, Chen SC, Chien HY, Chen YL.
    Chemosphere; 2008 Feb 21; 70(8):1492-9. PubMed ID: 17950413
    [Abstract] [Full Text] [Related]

  • 29. Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume: Nitrate versus iron reducing conditions.
    van Leeuwen JA, Gerritse J, Hartog N, Ertl S, Parsons JR, Hassanizadeh SM.
    J Contam Hydrol; 2022 Jun 21; 248():104006. PubMed ID: 35439686
    [Abstract] [Full Text] [Related]

  • 30. Degradation of btex compounds under iron-reducing conditions in contaminated aquifer microcosms.
    Botton S, Parsons JR.
    Environ Toxicol Chem; 2006 Oct 21; 25(10):2630-8. PubMed ID: 17022403
    [Abstract] [Full Text] [Related]

  • 31. Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions.
    Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C.
    FEMS Microbiol Ecol; 2008 Oct 21; 66(1):143-57. PubMed ID: 18637040
    [Abstract] [Full Text] [Related]

  • 32. Impact of ethanol on the natural attenuation of benzene, toluene, and o-xylene in a normally sulfate-reducing aquifer.
    Mackay DM, de Sieyes NR, Einarson MD, Feris KP, Pappas AA, Wood IA, Jacobson L, Justice LG, Noske MN, Scow KM, Wilson JT.
    Environ Sci Technol; 2006 Oct 01; 40(19):6123-30. PubMed ID: 17051810
    [Abstract] [Full Text] [Related]

  • 33. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns.
    Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP.
    Appl Environ Microbiol; 1988 Feb 01; 54(2):490-6. PubMed ID: 3355134
    [Abstract] [Full Text] [Related]

  • 34. Flexible catabolism of monoaromatic hydrocarbons by anaerobic microbiota adapting to oxygen exposure.
    Wu Z, Yu X, Ji Y, Liu G, Gao P, Xia L, Li P, Liang B, Freilich S, Gu L, Qiao W, Jiang J.
    J Hazard Mater; 2024 Jan 15; 462():132762. PubMed ID: 37837778
    [Abstract] [Full Text] [Related]

  • 35. Response of sulfate-reducing bacteria and supporting microbial community to persulfate exposure in a continuous flow system.
    Bartlett CK, Slawson RM, Thomson NR.
    Environ Sci Process Impacts; 2019 Jul 17; 21(7):1193-1203. PubMed ID: 31204424
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods.
    Feisthauer S, Seidel M, Bombach P, Traube S, Knöller K, Wange M, Fachmann S, Richnow HH.
    J Contam Hydrol; 2012 May 15; 133():17-29. PubMed ID: 22484391
    [Abstract] [Full Text] [Related]

  • 39. In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene.
    Geyer R, Peacock AD, Miltner A, Richnow HH, White DC, Sublette KL, Kästner M.
    Environ Sci Technol; 2005 Jul 01; 39(13):4983-9. PubMed ID: 16053100
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.