These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 39154628

  • 21. An electrochemical aptasensor based on PEI-C3N4/AuNWs for determination of chloramphenicol via exonuclease-assisted signal amplification.
    He B, Wang S.
    Mikrochim Acta; 2021 Jan 06; 188(1):22. PubMed ID: 33404928
    [Abstract] [Full Text] [Related]

  • 22. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification.
    Zeng R, Su L, Luo Z, Zhang L, Lu M, Tang D.
    Anal Chim Acta; 2018 Dec 14; 1038():21-28. PubMed ID: 30278904
    [Abstract] [Full Text] [Related]

  • 23. An exonuclease III-driven dual-mode aptasensor based on Au-Pd@Fc nanozyme and magnetic separation pretreatment for aminoglycoside antibiotics detection.
    Yue F, Hu M, Bai M, Guo Y, Sun X, Zhao G.
    Food Chem; 2024 Dec 01; 460(Pt 1):140480. PubMed ID: 39032300
    [Abstract] [Full Text] [Related]

  • 24. Dual-sensitized heterojunction Ag2S/ZnS/NiS composites with entire visible-light region absorption for ultrasensitive photoelectrochemical detection of tobramycin.
    Jin Y, Yu W, Chen L, Yuan R, Liu J, Fu Y, Chai Y.
    Biosens Bioelectron; 2024 Sep 15; 260():116459. PubMed ID: 38838575
    [Abstract] [Full Text] [Related]

  • 25. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization.
    Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X.
    Analyst; 2015 Nov 21; 140(22):7784-91. PubMed ID: 26460269
    [Abstract] [Full Text] [Related]

  • 26. A label-free electrochemical magnetic aptasensor based on exonuclease III-assisted signal amplification for determination of carcinoembryonic antigen.
    Li X, Weng C, Wang J, Yang W, Lu Q, Yan X, Sakran MA, Hong J, Zhu W, Zhou X.
    Mikrochim Acta; 2020 Aug 08; 187(9):492. PubMed ID: 32770422
    [Abstract] [Full Text] [Related]

  • 27. Ratiometric electrochemical aptasensor for the sensitive detection of carcinoembryonic antigen based on a hairpin DNA probe and exonuclease I-assisted target recycling.
    Ma H, Wang P, Xie Y, Liu J, Feng W, Li S.
    Anal Biochem; 2022 Jul 15; 649():114694. PubMed ID: 35483418
    [Abstract] [Full Text] [Related]

  • 28. Enzyme- and label-free electrochemical aptasensor for kanamycin detection based on double stir bar-assisted toehold-mediated strand displacement reaction for dual-signal amplification.
    Hong F, Chen X, Cao Y, Dong Y, Wu D, Hu F, Gan N.
    Biosens Bioelectron; 2018 Jul 30; 112():202-208. PubMed ID: 29709830
    [Abstract] [Full Text] [Related]

  • 29. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy.
    Lin C, Zheng H, Huang Y, Chen Z, Luo F, Wang J, Guo L, Qiu B, Lin Z, Yang H.
    Biosens Bioelectron; 2018 Oct 15; 117():474-479. PubMed ID: 29982116
    [Abstract] [Full Text] [Related]

  • 30. Aptamer superstructure-based electrochemical biosensor for sensitive detection of ATP in rat brain with in vivo microdialysis.
    Jiang Y, Ma W, Ji W, Wei H, Mao L.
    Analyst; 2019 Feb 25; 144(5):1711-1717. PubMed ID: 30657477
    [Abstract] [Full Text] [Related]

  • 31. Electrochemical biosensor for detection of MON89788 gene fragments with spiny trisoctahedron gold nanocrystal and target DNA recycling amplification.
    Peng Y, Li R, Yu M, Yi X, Zhu H, Li Z, Yang Y.
    Mikrochim Acta; 2020 Aug 10; 187(9):494. PubMed ID: 32778963
    [Abstract] [Full Text] [Related]

  • 32. Electrochemical aptasensor for sulfadimethoxine detection based on the triggered cleavage activity of nuclease P1 by aptamer-target complex.
    Bai Z, Chen Y, Li F, Zhou Y, Yin H, Ai S.
    Talanta; 2019 Nov 01; 204():409-414. PubMed ID: 31357313
    [Abstract] [Full Text] [Related]

  • 33. Highly catalytic sulfur-doped and bimetal-coordinated CoFe(CN)5NO nanoparticles coupled with PER/HCR amplification cascades for sensitive electrochemical aptamer luteinizing hormone assay.
    Chen Q, Cao J, Zhao Y, Jiang B, Yuan R, Xiang Y.
    Biosens Bioelectron; 2024 Oct 01; 261():116473. PubMed ID: 38878701
    [Abstract] [Full Text] [Related]

  • 34. An enzyme-free and label-free signal-on aptasensor based on DNAzyme-driven DNA walker strategy.
    Lei S, Xu L, Liu Z, Zou L, Li G, Ye B.
    Anal Chim Acta; 2019 Nov 12; 1081():59-64. PubMed ID: 31446964
    [Abstract] [Full Text] [Related]

  • 35. Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow's milk based on resonance scattering spectra and nanogold catalytic amplification.
    Yan S, Lai X, Wang Y, Ye N, Xiang Y.
    Food Chem; 2019 Oct 15; 295():36-41. PubMed ID: 31174769
    [Abstract] [Full Text] [Related]

  • 36. Structure-switching fluorescence aptasensor for sensitive detection of chloramphenicol.
    Ma P, Sun Y, Khan IM, Gu Q, Yue L, Wang Z.
    Mikrochim Acta; 2020 Aug 19; 187(9):505. PubMed ID: 32815083
    [Abstract] [Full Text] [Related]

  • 37. Target-induced structure switching of aptamers facilitates strand displacement for DNAzyme recycling amplification detection of thrombin in human serum.
    Li J, Wang S, Jiang B, Xiang Y, Yuan R.
    Analyst; 2019 Mar 25; 144(7):2430-2435. PubMed ID: 30816386
    [Abstract] [Full Text] [Related]

  • 38. Highly sensitive fluorescence detection of target DNA by coupling exonuclease-assisted cascade target recycling and DNAzyme amplification.
    Liu S, Cheng C, Liu T, Wang L, Gong H, Li F.
    Biosens Bioelectron; 2015 Jan 15; 63():99-104. PubMed ID: 25063920
    [Abstract] [Full Text] [Related]

  • 39. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJf exonuclease-assisted targets recycling amplification.
    Chen M, Gan N, Zhou Y, Li T, Xu Q, Cao Y, Chen Y.
    Talanta; 2016 Dec 01; 161():867-874. PubMed ID: 27769495
    [Abstract] [Full Text] [Related]

  • 40. Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification.
    Qu X, Wang J, Zhang R, Zhao Y, Li S, Wang Y, Liu S, Huang J, Yu J.
    Mikrochim Acta; 2020 Mar 02; 187(3):193. PubMed ID: 32124067
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.