These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 39159107
1. Generalized Quantum Fluctuation Theorem for Energy Exchange. Wu W, An JH. Phys Rev Lett; 2024 Aug 02; 133(5):050401. PubMed ID: 39159107 [Abstract] [Full Text] [Related]
2. Statistics of quantum heat in the Caldeira-Leggett model. Zhang ZZ, Tan QS, Wu W. Phys Rev E; 2024 Jun 02; 109(6-1):064134. PubMed ID: 39021018 [Abstract] [Full Text] [Related]
3. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem. Nicolin L, Segal D. J Chem Phys; 2011 Oct 28; 135(16):164106. PubMed ID: 22047227 [Abstract] [Full Text] [Related]
4. Non-Markovian work fluctuation theorem in crossed electric and magnetic fields. Jiménez-Aquino JI. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug 28; 92(2):022149. PubMed ID: 26382385 [Abstract] [Full Text] [Related]
5. Quantum heat-fluctuation theorem of a reduced system: an exactly solvable case. Bai ZW. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb 28; 83(2 Pt 1):021101. PubMed ID: 21405812 [Abstract] [Full Text] [Related]
6. Transient exchange fluctuation theorems for heat using a Hamiltonian framework: Classical and quantum regimes. Pal PS, Lahiri S, Jayannavar AM. Phys Rev E; 2017 Apr 28; 95(4-1):042124. PubMed ID: 28505812 [Abstract] [Full Text] [Related]
7. Nonequilibrium work fluctuations for oscillators in non-Markovian baths. Mai T, Dhar A. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun 28; 75(6 Pt 1):061101. PubMed ID: 17677214 [Abstract] [Full Text] [Related]
8. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality. Cohen D, Imry Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul 28; 86(1 Pt 1):011111. PubMed ID: 23005372 [Abstract] [Full Text] [Related]
9. Statistical properties of the heat flux between two nonequilibrium steady-state thermostats. Lameche M, Naert A. Phys Rev E; 2021 Apr 28; 103(4-1):042143. PubMed ID: 34005904 [Abstract] [Full Text] [Related]
10. Test of fluctuation theorems in non-Markovian open quantum systems. Kawamoto T, Hatano N. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep 28; 84(3 Pt 1):031116. PubMed ID: 22060337 [Abstract] [Full Text] [Related]
11. Fluctuation Theorem Uncertainty Relation. Hasegawa Y, Van Vu T. Phys Rev Lett; 2019 Sep 13; 123(11):110602. PubMed ID: 31573234 [Abstract] [Full Text] [Related]
12. Fluctuation Theorem for Many-Body Pure Quantum States. Iyoda E, Kaneko K, Sagawa T. Phys Rev Lett; 2017 Sep 08; 119(10):100601. PubMed ID: 28949188 [Abstract] [Full Text] [Related]
13. Heat distribution in quantum Brownian motion. Zhang ZZ, Tan QS, Wu W. Phys Rev E; 2023 Jul 08; 108(1-1):014138. PubMed ID: 37583192 [Abstract] [Full Text] [Related]
14. Exchange fluctuation theorem for correlated quantum systems. Jevtic S, Rudolph T, Jennings D, Hirono Y, Nakayama S, Murao M. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct 08; 92(4):042113. PubMed ID: 26565174 [Abstract] [Full Text] [Related]
15. Nonequilibrium work distributions in quantum impurity system-bath mixing processes. Gong H, Wang Y, Zheng X, Xu RX, Yan Y. J Chem Phys; 2022 Aug 07; 157(5):054109. PubMed ID: 35933203 [Abstract] [Full Text] [Related]
16. Jarzynski equality, Crooks fluctuation theorem, and the fluctuation theorems of heat for arbitrary initial states. Gong Z, Quan HT. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul 07; 92(1):012131. PubMed ID: 26274148 [Abstract] [Full Text] [Related]
17. Joint Fluctuation Theorems for Sequential Heat Exchange. Santos J, Timpanaro A, Landi G. Entropy (Basel); 2020 Jul 12; 22(7):. PubMed ID: 33286535 [Abstract] [Full Text] [Related]
18. Fluctuation relation for heat exchange in Markovian open quantum systems. Ramezani M, Golshani M, Rezakhani AT. Phys Rev E; 2018 Apr 12; 97(4-1):042101. PubMed ID: 29758671 [Abstract] [Full Text] [Related]
19. Quantum-parametric-oscillator heat engines in squeezed thermal baths: Foundational theoretical issues. Arısoy O, Hsiang JT, Hu BL. Phys Rev E; 2022 Jan 12; 105(1-1):014108. PubMed ID: 35193212 [Abstract] [Full Text] [Related]
20. Quantum bath effects on nonequilibrium heat transport in model molecular junctions. Carpio-Martínez P, Hanna G. J Chem Phys; 2021 Mar 07; 154(9):094108. PubMed ID: 33685175 [Abstract] [Full Text] [Related] Page: [Next] [New Search]