These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


113 related items for PubMed ID: 39160996

  • 1. Phase-field-based lattice Boltzmann method for two-phase flows with interfacial mass or heat transfer.
    Chen B, Zhan C, Chai Z, Shi B.
    Phys Rev E; 2024 Jul; 110(1-2):015307. PubMed ID: 39160996
    [Abstract] [Full Text] [Related]

  • 2. Lattice Boltzmann modeling of three-phase incompressible flows.
    Liang H, Shi BC, Chai ZH.
    Phys Rev E; 2016 Jan; 93(1):013308. PubMed ID: 26871191
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.
    Li Q, Luo KH.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895
    [Abstract] [Full Text] [Related]

  • 7. Lattice Boltzmann approach for near-field thermal radiation.
    Chen Y, Xuan Y.
    Phys Rev E; 2020 Oct; 102(4-1):043308. PubMed ID: 33212724
    [Abstract] [Full Text] [Related]

  • 8. Phase-field lattice Boltzmann model for two-phase flows with large density ratio.
    Zhang S, Tang J, Wu H.
    Phys Rev E; 2022 Jan; 105(1-2):015304. PubMed ID: 35193185
    [Abstract] [Full Text] [Related]

  • 9. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X, Liang H, Chai Z, Shi B.
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Phase-field lattice Boltzmann model for interface tracking of a binary fluid system based on the Allen-Cahn equation.
    Zu YQ, Li AD, Wei H.
    Phys Rev E; 2020 Nov; 102(5-1):053307. PubMed ID: 33327126
    [Abstract] [Full Text] [Related]

  • 17. Lattice Boltzmann model for the convection-diffusion equation.
    Chai Z, Zhao TS.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063309. PubMed ID: 23848808
    [Abstract] [Full Text] [Related]

  • 18. Multiple-relaxation-time lattice Boltzmann simulation for flow, mass transfer, and adsorption in porous media.
    Ma Q, Chen Z, Liu H.
    Phys Rev E; 2017 Jul; 96(1-1):013313. PubMed ID: 29347115
    [Abstract] [Full Text] [Related]

  • 19. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation.
    Begmohammadi A, Haghani-Hassan-Abadi R, Fakhari A, Bolster D.
    Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360
    [Abstract] [Full Text] [Related]

  • 20. Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows.
    Liang H, Chai ZH, Shi BC, Guo ZL, Zhang T.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063311. PubMed ID: 25615226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.