These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 39175426

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols.
    Saha R, Hembram BC, Panda S, Jana NC, Bagh B.
    Org Biomol Chem; 2024 Aug 07; 22(31):6321-6330. PubMed ID: 39039931
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Cobalt-Catalyzed Divergence in C(sp3)-H Functionalization of 9H-Fluorene: A Streamlined Approach Utilizing Alcohols.
    Kumar R, Padhy SR, Balaraman E.
    J Org Chem; 2024 Oct 18; 89(20):15103-15116. PubMed ID: 39378241
    [Abstract] [Full Text] [Related]

  • 5. Supported Nickel Nanoparticles as Catalyst in Direct sp3 C-H Alkylation of 9H-Fluorene Using Alcohols as Alkylating Agent.
    M V, Joshi H, A S A, Dey R.
    Chem Asian J; 2024 Oct 14; ():e202400989. PubMed ID: 39400506
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Iron-Catalyzed Borrowing Hydrogen C-Alkylation of Oxindoles with Alcohols.
    Dambatta MB, Polidano K, Northey AD, Williams JMJ, Morrill LC.
    ChemSusChem; 2019 Jun 07; 12(11):2345-2349. PubMed ID: 30958919
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Ni-Catalyzed α-Alkylation of Unactivated Amides and Esters with Alcohols by Hydrogen Auto-Transfer Strategy.
    Midya SP, Rana J, Pitchaimani J, Nandakumar A, Madhu V, Balaraman E.
    ChemSusChem; 2018 Nov 23; 11(22):3911-3916. PubMed ID: 30284756
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach.
    Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND.
    J Org Chem; 2023 May 05; 88(9):5944-5961. PubMed ID: 37052217
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Unravelling a bench-stable zinc-amide compound as highly active multitasking catalyst for radical-mediated selective alk(en)ylation of unactivated carbocycles under mild conditions.
    Sahoo S, Manna S, Rit A.
    Chem Sci; 2024 Apr 03; 15(14):5238-5247. PubMed ID: 38577381
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation.
    Huang F, Liu Z, Yu Z.
    Angew Chem Int Ed Engl; 2016 Jan 18; 55(3):862-75. PubMed ID: 26639633
    [Abstract] [Full Text] [Related]

  • 19. Titanium-Catalyzed Selective N-Alkylation of Amines with Alcohols via Borrowing Hydrogen Methodology.
    Upadhyay R, Maurya SK.
    J Org Chem; 2023 Dec 15; 88(24):16960-16966. PubMed ID: 38048482
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.