These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 39180495
21. Transcriptome Analysis Reveals Altered Inflammatory Pathway in an Inducible Glial Cell Model of Myotonic Dystrophy Type 1. Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña J, Vázquez-Santillán K, Leyva-García N, Ortega A, Maldonado V, Rangel C, Magaña JJ, Cisneros B, Hernández-Hernández O. Biomolecules; 2021 Jan 26; 11(2):. PubMed ID: 33530452 [Abstract] [Full Text] [Related]
26. Daunorubicin reduces MBNL1 sequestration caused by CUG-repeat expansion and rescues cardiac dysfunctions in a Drosophila model of myotonic dystrophy. Chakraborty M, Sellier C, Ney M, Pascal V, Charlet-Berguerand N, Artero R, Llamusi B. Dis Model Mech; 2018 Apr 23; 11(4):. PubMed ID: 29592894 [Abstract] [Full Text] [Related]
31. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. de Haro M, Al-Ramahi I, De Gouyon B, Ukani L, Rosa A, Faustino NA, Ashizawa T, Cooper TA, Botas J. Hum Mol Genet; 2006 Jul 01; 15(13):2138-45. PubMed ID: 16723374 [Abstract] [Full Text] [Related]
32. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy. Sobczak K, Wheeler TM, Wang W, Thornton CA. Mol Ther; 2013 Feb 01; 21(2):380-7. PubMed ID: 23183533 [Abstract] [Full Text] [Related]
33. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Meola G, Cardani R. Biochim Biophys Acta; 2015 Apr 01; 1852(4):594-606. PubMed ID: 24882752 [Abstract] [Full Text] [Related]
34. Cytoplasmic CUG RNA foci are insufficient to elicit key DM1 features. Dansithong W, Wolf CM, Sarkar P, Paul S, Chiang A, Holt I, Morris GE, Branco D, Sherwood MC, Comai L, Berul CI, Reddy S. PLoS One; 2008 Apr 01; 3(12):e3968. PubMed ID: 19092997 [Abstract] [Full Text] [Related]
35. Combinatorial effects of ion channel mis-splicing as a cause of myopathy in myotonic dystrophy. Nitschke L, Cooper TA. J Clin Invest; 2024 Jan 02; 134(1):. PubMed ID: 38165037 [Abstract] [Full Text] [Related]
37. The CTG repeat expansion size correlates with the splicing defects observed in muscles from myotonic dystrophy type 1 patients. Botta A, Rinaldi F, Catalli C, Vergani L, Bonifazi E, Romeo V, Loro E, Viola A, Angelini C, Novelli G. J Med Genet; 2008 Oct 02; 45(10):639-46. PubMed ID: 18611984 [Abstract] [Full Text] [Related]
38. Quercetin selectively reduces expanded repeat RNA levels in models of myotonic dystrophy. Mishra SK, Hicks SM, Frias JA, Vangaveti S, Nakamori M, Cleary JD, Reddy K, Berglund JA. bioRxiv; 2023 Feb 02. PubMed ID: 36778282 [Abstract] [Full Text] [Related]
39. HNRNPA1-induced spliceopathy in a transgenic mouse model of myotonic dystrophy. Li M, Zhuang Y, Batra R, Thomas JD, Li M, Nutter CA, Scotti MM, Carter HA, Wang ZJ, Huang XS, Pu CQ, Swanson MS, Xie W. Proc Natl Acad Sci U S A; 2020 Mar 10; 117(10):5472-5477. PubMed ID: 32086392 [Abstract] [Full Text] [Related]
40. Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy. Sznajder ŁJ, Swanson MS. Int J Mol Sci; 2019 Jul 09; 20(13):. PubMed ID: 31323950 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]