These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 39181046
1. Methionine represses gray mold of tomato by keeping nitric oxide at an appropriate level via ethylene synthesis and signal transduction. Zhang Q, Zhang S, Wu B, Song Z, Shi J. Food Chem; 2024 Dec 15; 461():140942. PubMed ID: 39181046 [Abstract] [Full Text] [Related]
2. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus. Lin Y, Ruan H, Akutse KS, Lai B, Lin Y, Hou Y, Zhong F. J Agric Food Chem; 2019 Dec 11; 67(49):13706-13717. PubMed ID: 31693347 [Abstract] [Full Text] [Related]
3. GABA keeps nitric oxide in balance by regulating GSNOR to enhance disease resistance of harvested tomato against Botrytis cinerea. Wang X, Cao J, Qiao J, Pan J, Zhang S, Li Q, Wang Q, Gong B, Shi J. Food Chem; 2022 Oct 30; 392():133299. PubMed ID: 35640428 [Abstract] [Full Text] [Related]
4. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Díaz J, ten Have A, van Kan JA. Plant Physiol; 2002 Jul 30; 129(3):1341-51. PubMed ID: 12114587 [Abstract] [Full Text] [Related]
5. Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses. Tang Q, Zhu F, Cao X, Zheng X, Yu T, Lu L. Food Chem; 2019 Apr 25; 278():240-247. PubMed ID: 30583368 [Abstract] [Full Text] [Related]
6. The Involvement of Jasmonic Acid, Ethylene, and Salicylic Acid in the Signaling Pathway of Clonostachys rosea-Induced Resistance to Gray Mold Disease in Tomato. Wang Q, Chen X, Chai X, Xue D, Zheng W, Shi Y, Wang A. Phytopathology; 2019 Jul 25; 109(7):1102-1114. PubMed ID: 30880572 [Abstract] [Full Text] [Related]
7. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Harel YM, Mehari ZH, Rav-David D, Elad Y. Phytopathology; 2014 Feb 25; 104(2):150-7. PubMed ID: 24047252 [Abstract] [Full Text] [Related]
8. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine. Tanaka T, Fujita M, Kusajima M, Narita F, Asami T, Maruyama-Nakashita A, Nakajima M, Nakashita H. Int J Mol Sci; 2024 Jun 07; 25(12):. PubMed ID: 38928022 [Abstract] [Full Text] [Related]
9. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. Li X, Zhang Y, Huang L, Ouyang Z, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2014 Jun 15; 14():166. PubMed ID: 24930014 [Abstract] [Full Text] [Related]
10. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Sun C, Fu D, Jin L, Chen M, Zheng X, Yu T. Carbohydr Polym; 2018 Nov 01; 199():341-352. PubMed ID: 30143138 [Abstract] [Full Text] [Related]
11. Knockout of SlNPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways. Li R, Wang L, Li Y, Zhao R, Zhang Y, Sheng J, Ma P, Shen L. Physiol Plant; 2020 Dec 01; 170(4):569-579. PubMed ID: 32840878 [Abstract] [Full Text] [Related]
12. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit. Zheng Y, Hong H, Chen L, Li J, Sheng J, Shen L. J Agric Food Chem; 2014 Feb 12; 62(6):1390-6. PubMed ID: 24490996 [Abstract] [Full Text] [Related]
13. Effects of linalool on Botrytis cinerea growth and control of tomato gray mold. Wang QF, Wang XY, Li HS, Yang XY, Zhang RM, Gong B, Li XM, Shi QH. Ying Yong Sheng Tai Xue Bao; 2023 Jan 12; 34(1):213-220. PubMed ID: 36799396 [Abstract] [Full Text] [Related]
14. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit. Yu W, Zhao R, Sheng J, Shen L. J Agric Food Chem; 2018 Sep 26; 66(38):9923-9932. PubMed ID: 30192535 [Abstract] [Full Text] [Related]
15. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea. Zheng Y, Yang Y, Liu C, Chen L, Sheng J, Shen L. J Agric Food Chem; 2015 Jun 10; 63(22):5509-17. PubMed ID: 25910076 [Abstract] [Full Text] [Related]
16. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X, Xu Z, Chen L, Ren Z. BMC Plant Biol; 2019 Oct 21; 19(1):437. PubMed ID: 31638895 [Abstract] [Full Text] [Related]
17. Ethylene production by Botrytis cinerea in vitro and in tomatoes. Cristescu SM, De Martinis D, Te Lintel Hekkert S, Parker DH, Harren FJ. Appl Environ Microbiol; 2002 Nov 21; 68(11):5342-50. PubMed ID: 12406723 [Abstract] [Full Text] [Related]
18. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL. Plant Physiol; 2009 Jul 21; 150(3):1434-49. PubMed ID: 19465579 [Abstract] [Full Text] [Related]
19. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456 [Abstract] [Full Text] [Related]
20. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733 [Abstract] [Full Text] [Related] Page: [Next] [New Search]