These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4'-Deoxyflavones in Scutellaria baicalensis. Zhao Q, Cui MY, Levsh O, Yang D, Liu J, Li J, Hill L, Yang L, Hu Y, Weng JK, Chen XY, Martin C. Mol Plant; 2018 Jan 08; 11(1):135-148. PubMed ID: 28842248 [Abstract] [Full Text] [Related]
3. The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. Fang S, Qiu S, Chen K, Lv Z, Chen W. Plant Physiol Biochem; 2023 Jul 08; 200():107794. PubMed ID: 37257409 [Abstract] [Full Text] [Related]
4. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Zhao Q, Zhang Y, Wang G, Hill L, Weng JK, Chen XY, Xue H, Martin C. Sci Adv; 2016 Apr 08; 2(4):e1501780. PubMed ID: 27152350 [Abstract] [Full Text] [Related]
5. Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Xu H, Park NI, Li X, Kim YK, Lee SY, Park SU. Bioresour Technol; 2010 Dec 08; 101(24):9715-22. PubMed ID: 20708926 [Abstract] [Full Text] [Related]
6. Genome-wide characterization of 2-oxoglutarate and Fe(II)-dependent dioxygenase family genes in tomato during growth cycle and their roles in metabolism. Wei S, Zhang W, Fu R, Zhang Y. BMC Genomics; 2021 Feb 18; 22(1):126. PubMed ID: 33602133 [Abstract] [Full Text] [Related]
7. Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots. Kim YS, Kim YB, Kim Y, Lee MY, Park SU. Nat Prod Commun; 2014 Jun 18; 9(6):803-7. PubMed ID: 25115083 [Abstract] [Full Text] [Related]
8. Characterization of UDP-glycosyltransferase family members reveals how major flavonoid glycoside accumulates in the roots of Scutellaria baicalensis. Pei T, Yan M, Li T, Li X, Yin Y, Cui M, Fang Y, Liu J, Kong Y, Xu P, Zhao Q. BMC Genomics; 2022 Mar 02; 23(1):169. PubMed ID: 35232374 [Abstract] [Full Text] [Related]
9. Molecular characterization of carotenoid cleavage dioxygenases and the effect of gibberellin, abscisic acid, and sodium chloride on the expression of genes involved in the carotenoid biosynthetic pathway and carotenoid accumulation in the callus of Scutellaria baicalensis Georgi. Tuan PA, Kim JK, Lee S, Chae SC, Park SU. J Agric Food Chem; 2013 Jun 12; 61(23):5565-72. PubMed ID: 23683071 [Abstract] [Full Text] [Related]
10. Deep Sequencing of the Scutellaria baicalensis Georgi Transcriptome Reveals Flavonoid Biosynthetic Profiling and Organ-Specific Gene Expression. Liu J, Hou J, Jiang C, Li G, Lu H, Meng F, Shi L. PLoS One; 2015 Jun 12; 10(8):e0136397. PubMed ID: 26317778 [Abstract] [Full Text] [Related]
11. Integrated metabolome and transcriptome analyses of anthocyanin biosynthesis reveal key candidate genes involved in colour variation of Scutellaria baicalensis flowers. Guo F, Guan R, Sun X, Zhang C, Shan C, Liu M, Cui N, Wang P, Lin H. BMC Plant Biol; 2023 Dec 15; 23(1):643. PubMed ID: 38097929 [Abstract] [Full Text] [Related]
13. Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis. Xu Z, Gao R, Pu X, Xu R, Wang J, Zheng S, Zeng Y, Chen J, He C, Song J. Genomics Proteomics Bioinformatics; 2020 Jun 15; 18(3):230-240. PubMed ID: 33157301 [Abstract] [Full Text] [Related]
14. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Li J, Tian C, Xia Y, Mutanda I, Wang K, Wang Y. Metab Eng; 2019 Mar 15; 52():124-133. PubMed ID: 30496827 [Abstract] [Full Text] [Related]
15. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng JK, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen XY, Martin C. Mol Plant; 2019 Jul 01; 12(7):935-950. PubMed ID: 30999079 [Abstract] [Full Text] [Related]
16. [Study advance in biosynthesis of flavone from Scutellaria]. Yu-Min F, Meng-Ying C, Jie L, Tian-Lin P, Yu-Kun W, Qing Z. Zhongguo Zhong Yao Za Zhi; 2020 Oct 01; 45(20):4819-4826. PubMed ID: 33350252 [Abstract] [Full Text] [Related]
17. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Park NI, Xu H, Li X, Kim SJ, Park SU. Funct Integr Genomics; 2011 Sep 01; 11(3):491-6. PubMed ID: 21538138 [Abstract] [Full Text] [Related]
18. Molecular identification of a flavone synthase I/flavanone 3β-hydroxylase bifunctional enzyme from fern species Psilotum nudum. Fu J, Wang PY, Ni R, Zhang JZ, Zhu TT, Tan H, Zhang J, Lou HX, Cheng AX. Plant Sci; 2023 Apr 01; 329():111599. PubMed ID: 36682585 [Abstract] [Full Text] [Related]
19. Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Park CH, Xu H, Yeo HJ, Park YE, Hwang GS, Park NI, Park SU. Metab Eng; 2021 Mar 01; 64():64-73. PubMed ID: 33486093 [Abstract] [Full Text] [Related]
20. Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco. Wang Z, Wang S, Wu M, Li Z, Liu P, Li F, Chen Q, Yang A, Yang J. Planta; 2019 Feb 01; 249(2):543-561. PubMed ID: 30293202 [Abstract] [Full Text] [Related] Page: [Next] [New Search]